首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

2.
Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I-III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769-783 from type I-III collagens, the second inserted α1(II) collagen residues 763-768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784-792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased k(cat)/K(m) and k(cat) for MMP-1. MMP-13 showed the opposite behavior with a decreased k(cat)/K(m) and k(cat) and a greatly improved K(m) in response to the C-terminal residues. Insertion of the N-terminal residues enhanced k(cat)/K(m) and k(cat) for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced K(m) and dramatically decreased k(cat), resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs.  相似文献   

3.
Phosphotransacetylase (EC 2.3.1.8) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA): CH(3)COOPO(3)(2-) + CoASH <==> CH(3)COSCoA + HPO(4)(2-). The role of arginine residues was investigated for the phosphotransacetylase from Methanosarcina thermophila. Kinetic analysis of a suite of variants indicated that Arg 87 and Arg 133 interact with the substrate CoA. Arg 87 variants were reduced in the ability to discriminate between CoA and the CoA analog 3'-dephospho-CoA, indicating that Arg 87 forms a salt bridge with the 3'-phosphate of CoA. Arg 133 is postulated to interact with the 5'-phosphate of CoA. Large decreases in k(cat) and k(cat)/K(m) for all of the Arg 87 and Arg 133 variants indicated that these residues are also important, although not essential, for catalysis. Large decreases in k(cat) and k(cat)/K(m) were also observed for the variants in which lysine replaced Arg 87 and Arg 133, suggesting that the bidentate interaction of these residues with CoA or their greater bulk is important for optimal activity. Desulfo-CoA is a strong competitive inhibitor of the enzyme, suggesting that the sulfhydryl group of CoA is important for the optimization of CoA-binding energy but not for tight substrate binding. Chemical modification of the wild-type enzyme by 2,3-butanedione and substrate protection by CoA indicated that at least one reactive arginine is in the active site and is important for activity. The inhibition pattern of the R87Q variant indicated that Arg 87 is modified, which contributes to the inactivation; however, at least one additional active-site arginine is modified leading to enzyme inactivation, albeit at a lower rate.  相似文献   

4.
Cellobiose dehydrogenase is an extracellular flavocytochrome, which catalyzes the oxidation of cellobiose and other soluble oligosaccharides to their respective lactones, while reducing various one- and two-electron acceptors. Two residues at the active site of the flavin domain, His689 and Asn732, have been proposed to play critical roles in the oxidation of the substrate. To test these proposals, each residue was substituted with either a Gln, Asn, Glu, Asp, Val, Ala, and/or a His residue by site-directed mutagenesis, using a homologous expression system previously developed in our laboratory. This enabled an examination of the functional, stereochemical, and electrostatic constraints for binding and oxidation of the substrate. The steady-state kinetic parameters for the variant proteins were compared using cellobiose and its epimer, lactose, as the substrates. The H689 variants all exhibit >1000-fold lower k(cat) values, while the K(m) values for both substrates in these variants are similar to that of the wild-type enzyme. This supports the proposed role of this His residue as a general base in catalysis. The N732 variants exhibit a range of kinetic parameters: the k(cat) values for oxidation are 5-4000-fold lower than that for the wild-type enzyme, while the K(m) values vary between similar to and 60-fold higher than that for the wild-type. The difference in binding energy between cellobiose and lactose was calculated using the relationship delta(delta G) = -RT ln[(k(cat)/K(m))(lactose)/(k(cat)/K(m))(cellobiose)]. This calculation for the wild-type enzyme suggests that lactose binds considerably more weakly than cellobiose (7.2 kJ/mol difference), which corresponds to one extra (cumulative) hydrogen bond for cellobiose over lactose. Mutations at Asn732 result in a further weakening of lactose binding over cellobiose (2-4 kJ/mol difference). The results support a role for Asn732 in the binding of the substrate.  相似文献   

5.
PPO (protoporphyrinogen IX oxidase) catalyses the flavin-dependent six-electron oxidation of protogen (protoporphyrinogen IX) to form proto (protoporphyrin IX), a crucial step in haem and chlorophyll biosynthesis. The apparent K(m) value for wild-type tobacco PPO2 (mitochondrial PPO) was 1.17 muM, with a V(max) of 4.27 muM.min(-1).mg(-1) and a catalytic activity k(cat) of 6.0 s(-1). Amino acid residues that appear important for substrate binding in a crystal structure-based model of the substrate docked in the active site were interrogated by site-directed mutagenesis. PPO2 variant F392H did not reveal detectable enzyme activity indicating an important role of Phe(392) in substrate ring A stacking. Mutations of Leu(356), Leu(372) and Arg(98) increased k(cat) values up to 100-fold, indicating that the native residues are not essential for establishing an orientation of the substrate conductive to catalysis. Increased K(m) values of these PPO2 variants from 2- to 100-fold suggest that these residues are involved in, but not essential to, substrate binding via rings B and C. Moreover, one prominent structural constellation of human PPO causing the disease variegate porphyria (N67W/S374D) was successfully transferred into the tobacco PPO2 background. Therefore tobacco PPO2 represents a useful model system for the understanding of the structure-function relationship underlying detrimental human enzyme defects.  相似文献   

6.
Pitrilysin from Escherichia coli was overproduced, purified, and analyzed for enzymatic activity using 14 peptides as a substrate. Pitrilysin cleaved all the peptides, except for two of the smallest, at a limited number of sites, but showed little amino acid specificity. It cleaved beta-endorphin (beta-EP) most effectively, with a K(m) value of 0.36 microM and a k(cat) value of 750 min(-1). beta-EP consists of 31 residues and was predominantly cleaved by the enzyme at Lys(19)-Asn(20). Kinetic analyses using a series of beta-EP derivatives with N and/or C-terminal truncations and with amino acid substitutions revealed that three hydrophobic residues (Leu(14), Val(15), and Leu(17)) and the region 22-26 in beta-EP are responsible for high-affinity recognition by the enzyme. These two regions are located on the N- and C-terminal sides of the cleavage site in beta-EP, suggesting that the substrate binding pocket of pitrilysin spans its catalytic site.  相似文献   

7.
This study of the full-length bifunctional nonstructural protein 3 from hepatitis C virus (HCV) has revealed that residues in the helicase domain affect the inhibition of the protease. Two residues (Q526 and H528), apparently located in the interface between the S2 and S4 binding pockets of the substrate binding site of the protease, were selected for modification, and three enzyme variants (Q526A, H528A and H528S) were expressed, purified and characterized. The substitutions resulted in indistinguishable K(m) values and slightly lower k(cat) values compared to the wild-type. The K(i) values for a series of structurally diverse protease inhibitors were affected by the substitutions, with increases or decreases up to 10-fold. The inhibition profiles for H528A and H528S were different, confirming that not only did the removal of the imidazole side chain have an effect, but also that minor differences in the nature of the introduced side chain influenced the characteristics of the enzyme. These results indicate that residues in the helicase domain of nonstructural protein 3 can influence the protease, supporting our hypothesis that full-length hepatitis C virus nonstructural protein 3 should be used for protease inhibitor optimization and characterization. Furthermore, the data suggest that inhibitors can be designed to interact with residues in the helicase domain, potentially leading to more potent and selective compounds.  相似文献   

8.
Chuang HH  Lin HY  Lin FP 《The FEBS journal》2008,275(9):2240-2254
The functional and structural significance of the C-terminal region of Bacillus licheniformis chitinase was explored using C-terminal truncation mutagenesis. Comparative studies between full-length and truncated mutant molecules included initial rate kinetics, fluorescence and CD spectrometric properties, substrate binding and hydrolysis abilities, thermostability, and thermodenaturation kinetics. Kinetic analyses revealed that the overall catalytic efficiency, k(cat)/K(m), was slightly increased for the truncated enzymes toward the soluble 4-methylumbelliferyl-N-N'-diacetyl chitobiose or 4-methylumbelliferyl-N-N'-N'-triacetyl chitotriose or insoluble alpha-chitin substrate. By contrast, changes to substrate affinity, K(m), and turnover rate, k(cat), varied considerably for both types of chitin substrates between the full-length and truncated enzymes. Both truncated enzymes exhibited significantly higher thermostabilities than the full-length enzyme. The truncated mutants retained similar substrate-binding specificities and abilities against the insoluble substrate but only had approximately 75% of the hydrolyzing efficiency of the full-length chitinase molecule. Fluorescence spectroscopy indicated that both C-terminal deletion mutants retained an active folding conformation similar to the full-length enzyme. However, a CD melting unfolding study was able to distinguish between the full-length and truncated mutant molecules by the two phases of apparent transition temperatures in the mutants. These results indicate that up to 145 amino acid residues, including the putative C-terminal chitin-binding region and the fibronectin (III) motif of B. licheniformis chitinase, could be removed without causing a seriously aberrant change in structure and a dramatic decrease in insoluble chitin hydrolysis. The results of the present study provide evidence demonstrating that the binding and hydrolyzing of insoluble chitin substrate for B. licheniformis chitinase was not dependent solely on the putative C-terminal chitin-binding region and the fibronectin (III) motif.  相似文献   

9.
Although the four polypeptides of blasticidin S (BS) deaminase (BSD) are packed rather tightly coordinated to the "structural and catalytic" zinc atom of each subunit, the C-terminal region of the enzyme was suggested to be somewhat molten and flexible [M. Kimura, S. Sekido, Y. Isogai, and I. Yamaguchi (2000) J. Biochem. 127, 955-963]. To understand roles of this flexible region, we constructed five C-terminal deletion variants of BSD (each successively deleted from the C-terminal end up to five residues) and analyzed their biochemical properties focusing on the structure and activity of the enzyme. BSD and all of the deletion mutants showed the unique rigid conformation (e.g., characterized by their stabilities in SDS solution) and high levels of resistance against protease digestions. Furthermore, both the wild-type and deletion apoenzymes exhibited similar physical properties in thermodynamic refolding into the stable tetramer conformation. However, these small C-terminal deletions exerted deleterious effects on the catalytic efficiency of the enzyme as indicated by their strongly reduced k(cat)/K(m) value. Judging from the altered kinetic parameters and unaltered structural properties of the deletion variants, these C-terminal residues appear to be directly involved in enzyme-substrate interaction. In this short flexible region, Tyr-126, Trp-128, and Gly-130 were the key residues. Most notably, removal of Gly-130 markedly increased K(m) for BS without affecting its k(cat) value. These results indicate that the flexible C-terminal region is important for catalytic function and that a single Gly residue at the C-terminal end of BSD contributes significantly in facilitating access of a substrate to the active site.  相似文献   

10.
Clark DD  Boyd JM  Ensign SA 《Biochemistry》2004,43(21):6763-6771
2-[(R)-2-Hydroxypropylthio]ethanesulfonate (R-HPC) dehydrogenase (DH) catalyzes the reversible oxidation of R-HPC to 2-(2-ketopropylthio)ethanesulfonate (2-KPC) in a key reaction in the bacterial conversion of chiral epoxides to beta-keto acids. R-HPCDH is highly specific for the R-enantiomer of HPC, while a separate enzyme, S-HPCDH, catalyzes the oxidation of the corresponding S-enantiomer. In the present study, the features of substrate and enzyme imparting stereospecificity have been investigated for R-HPCDH. S-HPC was a substrate for R-HPCDH with a K(m) identical to that for R-HPC but with a k(cat) 600 times lower. Achiral 2-propanol and short-chain (R)- and (S)-2-alkanols were substrates for R-HPCDH. For (R)-alkanols, as the carbon chain length increased, K(m) decreased, with the K(m) for (R)-2-octanol being 1700 times lower than for 2-propanol. At the same time, k(cat) changed very little and was at least 90% lower than k(cat) for R-HPC and at least 22 times higher than k(cat) for S-HPC. (S)-2-Butanol and (S)-2-pentanol were substrates for R-HPCDH. The K(m) for (S)-2-butanol was identical to that for (R)-2-butanol, while the K(m) for (S)-2-pentanol was 7.5 times higher than for (R)-2-pentanol. Longer chain (S)-2-alkanols were sufficiently poor substrates for R-HPCDH that kinetic parameters could not be determined. Mutagenesis of C-terminal arginine residues of R-HPCDH revealed that R152 and R196 are essential for effective catalysis with the natural substrates R-HPC and 2-KPC but not for catalysis with 2-alkanols or ketones as substrates. Short-chain alkylsulfonates and coenzyme M (2-mercaptoethanesulfonate) were found to modify the kinetic parameters for 2-butanone reduction by R-HPCDH in a saturable fashion, with the general effect of increasing k(cat), decreasing K(m), and increasing the enantioselectivity of 2-butanone reduction to a theoretical value of 100% (S)-2-butanol. The modulating effects of ethanesulfonate and propanesulfonate provided thermodynamic binding constants close to K(m) for the natural substrates R-HPC and 2-KPC. The effects of alkylsulfonates on modulating the enantioselectivity and kinetic properties of R-HPCDH were abolished in R152A and R196A mutants but not in mutants of other C-terminal arginine residues. Collectively, the results suggest that interactions between the sulfonate of CoM and specific arginine residues are key to the enantioselectivity and catalytic efficiency of R-HPCDH. A model is proposed wherein sulfonate-arginine interactions within an alkylsulfonate binding pocket control the catalytic properties of R-HPCDH.  相似文献   

11.
Zhang Y  Deshpande A  Xie Z  Natesh R  Acharya KR  Brew K 《Glycobiology》2004,14(12):1295-1302
Aromatic amino acids are frequent components of the carbohydrate binding sites of lectins and enzymes. Previous structural studies have shown that in alpha-1,3 galactosyltransferase, the binding site for disaccharide acceptor substrates is encircled by four tryptophans, residues 249, 250, 314, and 356. To investigate their roles in enzyme specificity and catalysis, we expressed and characterized variants of the catalytic domain of alpha-1,3 galactosyltransferase with substitutions for each tryptophan. Substitution of glycine for tryptophan 249, whose indole ring interacts with the nonpolar B face of glucose or GlcNAc, greatly increases the K(m) for the acceptor substrate. In contrast, the substitution of tyrosine for tryptophan 314, which interacts with the beta-galactosyl moiety of the acceptor and UDP-galactose, decreases k(cat) for the galactosyltransferase reaction but does not affect the low UDP-galactose hydrolase activity. Thus, this highly conserved residue stabilizes the transition state for the galactose transfer to disaccharide but not to water. High-resolution crystallographic structures of the Trp(249)Gly mutant and the Trp(314)Tyr mutant indicate that the mutations do not affect the overall structure of the enzyme or its interactions with ligands. Substitutions for tryptophan 250 have only small effects on catalytic activity, but mutation of tryptophan 356 to threonine reduces catalytic activity for both transferase and hydrolase activities and reduces affinity for the acceptor substrate. This residue is adjacent to the flexible C-terminus that becomes ordered on binding UDP to assemble the acceptor binding site and influence catalysis. The results highlight the diverse roles of these tryptophans in enzyme action and the importance of k(cat) changes in modulating glycosyltransferase specificity.  相似文献   

12.
Cheon YH  Park HS  Kim JH  Kim Y  Kim HS 《Biochemistry》2004,43(23):7413-7420
We previously proposed that the stereochemistry gate loops (SGLs) constituting the substrate binding pocket of D-hydantoinase, a (beta/alpha)(8)-barrel enzyme, might be major structural determinants of the substrate specificity [Cheon, Y. H., et al. (2002) Biochemistry 41, 9410-9417]. To construct a mutant D-hydantoinase with favorable substrate specificity for the synthesis of commercially important non-natural amino acids, the SGL loops of the enzyme were rationally manipulated on the basis of the structural analysis and sequence alignment of three hydantoinases with distinct substrate specificities. In the SGLs of D-hydantoinase from Bacillus stearothermophilus SD1, mutations of hydrophobic and bulky residues Met 63, Leu 65, Phe 152, and Phe 159, which interact with the exocyclic substituent of the substrate, induced remarkable changes in the substrate specificities. In particular, the substrate specificity of mutant F159A toward aromatic substrate hydroxyphenylhydantoin (HPH) was enhanced by approximately 200-fold compared with that of the wild-type enzyme. Saturation mutagenesis at position 159 revealed that k(cat) for aromatic substrates increased gradually as the size of the amino acid side chain decreased, and this seems to be due to reduced steric hindrance between the bulky exocyclic group of the substrate and the amino acid side chains. When site-directed random mutagenesis of residues 63 and 65 was conducted with the wild type and mutant F159A, the selected enzymes (M63F/L65V and L65F/F159A) exhibited approximately 10-fold higher k(cat) values for HPH than the wild-type counterpart, which is likely to result from reorganization of the active site for efficient turnover. These results indicate that the amino acid residues of SGLs forming the substrate binding pocket are critical for the substrate specificity of D-hydantoinase, and the results also imply that substrate specificities of cyclic amidohydrolase family enzymes can be modulated by rational design of these SGLs.  相似文献   

13.
Tripp BC  Ferry JG 《Biochemistry》2000,39(31):9232-9240
Four glutamate residues in the prototypic gamma-class carbonic anhydrase from Methanosarcina thermophila (Cam) were characterized by site-directed mutagenesis and chemical rescue studies. Alanine substitution indicated that an external loop residue, Glu 84, and an internal active site residue, Glu 62, are both important for CO(2) hydration activity. Two other external loop residues, Glu 88 and Glu 89, are less important for enzyme function. The two E84D and -H variants exhibited significant activity relative to wild-type activity in pH 7.5 MOPS buffer, suggesting that the original glutamate residue could be substituted with other ionizable residues with similar pK(a) values. The E84A, -C, -K, -Q, -S, and -Y variants exhibited large decreases in k(cat) values in pH 7.5 MOPS buffer, but only exhibited small changes in k(cat)/K(m). These same six variants were all chemically rescued by pH 7.5 imidazole buffer, with 23-46-fold increases in the apparent k(cat). These results are consistent with Glu 84 functioning as a proton shuttle residue. The E62D variant exhibited a 3-fold decrease in k(cat) and a 2-fold decrease in k(cat)/K(m) relative to those of the wild type in pH 7.5 MOPS buffer, while other substitutions (E62A, -C, -H, -Q, -T, and -Y) resulted in much larger decreases in both k(cat) and k(cat)/K(m). Imidazole did not significantly increase the k(cat) values and slightly decreased the k(cat)/K(m) values of most of the Glu 62 variants. These results indicate a primary preference for a carboxylate group at position 62, and support a proposed catalytic role for residue Glu 62 in the CO(2) hydration step, but do not definitively establish its role in the proton transport step.  相似文献   

14.
Lee JE  Raines RT 《Biochemistry》2003,42(39):11443-11450
Onconase (ONC), a homologue of ribonuclease A (RNase A), is in clinical trials for the treatment of cancer. ONC possesses a conserved active-site catalytic triad, which is composed of His10, Lys31, and His97. The three-dimensional structure of ONC suggests that two additional residues, Lys9 and an N-terminal lactam formed from a glutamine residue (Pca1), could also contribute to catalysis. To determine the role of Pca1, Lys9, and Lys31 in the function of ONC, site-directed mutagenesis was used to replace each with alanine. Values of k(cat)/K(M) for the variants were determined with a novel fluorogenic substrate, which was designed to match the nucleobase specificity of ONC and gives the highest known k(cat)/K(M) value for the enzyme. The K9A and K31A variants display 10(3)-fold lower k(cat)/K(M) values than the wild-type enzyme, and a K9A/K31A double variant suffers a >10(4)-fold decrease in catalytic activity. In addition, replacing Lys9 or Lys31 eliminates the antitumoral activity of ONC. The side chains of Pca1 and Lys9 form a hydrogen bond in crystalline ONC. Replacing Pca1 with an alanine residue lowers the catalytic activity of ONC by 20-fold. Yet, replacing Pca1 in the K9A variant enzyme does not further reduce catalytic activity, revealing that the function of the N-terminal pyroglutamate residue is to secure Lys9. The thermodynamic cycle derived from k(cat)/K(M) values indicates that the Pca1...Lys9 hydrogen bond contributes 2.0 kcal/mol to the stabilization of the rate-limiting transition state during catalysis. Finally, binding isotherms with a substrate analogue indicate that Lys9 and Lys31 contribute little to substrate binding and that the low intrinsic catalytic activity of ONC originates largely from the low affinity of the enzyme for its substrate. These findings could assist the further development of ONC as a cancer chemotherapeutic.  相似文献   

15.
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.  相似文献   

16.
The contributions to substrate binding and catalysis of 13 amino acid residues of the Caenorhabditis elegans diadenosine tetraphosphate pyrophosphohydrolase (Ap(4)A hydrolase) predicted from the crystal structure of an enzyme-inhibitor complex have been investigated by site-directed mutagenesis. Sixteen glutathione S-transferase-Ap(4)A hydrolase fusion proteins were expressed and their k(cat) and K(m) values determined after removal of the glutathione S-transferase domain. As expected for a Nudix hydrolase, the wild type k(cat) of 23 s(-1) was reduced by 10(5)-, 10(3)-, and 30-fold, respectively, by replacement of the conserved P(4)-phosphate-binding catalytic residues Glu(56), Glu(52), and Glu(103) by Gln. K(m) values were not affected, indicating a lack of importance for substrate binding. In contrast, mutating His(31) to Val or Ala and Lys(83) to Met produced 10- and 16-fold increases in K(m) compared with the wild type value of 8.8 microm. These residues stabilize the P(1)-phosphate. H31V and H31A had a normal k(cat) but K83M showed a 37-fold reduction in k(cat). Lys(36) also stabilizes the P(1)-phosphate and a K36M mutant had a 10-fold reduced k(cat) but a relatively normal K(m). Thus both Lys(36) and Lys(83) may play a role in catalysis. The previously suggested roles of Tyr(27), His(38), Lys(79), and Lys(81) in stabilizing the P(2) and P(3)-phosphates were not confirmed by mutagenesis, indicating the absence of phosphate-specific binding contacts in this region. Also, mutating both Tyr(76) and Tyr(121), which clamp one substrate adenosine moiety between them in the crystal structure, to Ala only increased K(m) 4-fold. It is concluded that interactions with the P(1)- and P(4)-phosphates are minimum and sufficient requirements for substrate binding by this class of enzyme, indicating that it may have a much wider substrate range then previously believed.  相似文献   

17.
The cDNA and deduced amino acid sequences for arginine kinase (AK) from the deep-sea clam Calyptogena kaikoi have been determined revealing an unusual two-domain (2D) structure with molecular mass of 80 kDa, twice that of normal AK. The amino acid sequences of both domains contain most of the residues thought to be required for substrate binding found in the horseshoe crab Limulus polyphemus AK, a well studied system for which several X-ray crystal structures exist. However, two highly conserved residues, D62 and R193, that form a salt bridge thereby stabilizing the substrate-bound structure have been replaced by G and N in domain 1, and G and P in domain 2, respectively. The present effort probes whether both domains of Calyptogena AK are catalytically competent. Recombinant constructs of the wild-type enzyme of both single domains, and of selected mutants of the Calyptogena AK have been expressed as fusion proteins with the maltose-binding protein. The wild-type two-domain enzyme (2D[WT]) had high AK activity (k(cat)=23 s(- 1), average value of the two domains), and the single domain 2 (D2[WT]) showed 1.5-times higher activity (k(cat)=38 s(- 1)) than the wild-type 2D[WT]. Interestingly, the single domain 1 (D1[WT]) showed only a very low activity (k(cat) approximately 0.016 s(- 1)). Introduction of a Y68A mutation in both domains virtually abolished catalytic activity. On the other hand, significant residual activity was observed (k(cat)=2.8 s(- 1)), when the Y68A mutation was introduced only into domain 2 of the two-domain enzyme. A similar mutation in domain 1 of the two-domain enzyme reduced activity to a much lower extent (k(cat)=11.1 s(- 1)). Although the domains of this "contiguous" dimeric AK each have catalytic capabilities, the presence of domain 2 strongly influences the stability and activity of domain 1.  相似文献   

18.
Phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri catalyzes the nicotinamide adenine dinucleotide-dependent oxidation of phosphite to phosphate. The enzyme belongs to the family of D-hydroxy acid dehydrogenases (DHDHs). A search of the protein databases uncovered many additional putative phosphite dehydrogenases. The genes encoding four diverse candidates were cloned and expressed, and the enzymes were purified and characterized. All oxidized phosphite to phosphate and had similar kinetic parameters despite a low level of pairwise sequence identity (39-72%). A recent crystal structure identified Arg301 as a residue in the active site that has not been investigated previously. Arg301 is fully conserved in the enzymes shown here to be PTDHs, but the residue is not conserved in other DHDHs. Kinetic analysis of site-directed mutants of this residue shows that it is important for efficient catalysis, with an ~100-fold decrease in k(cat) and an almost 700-fold increase in K(m,phosphite) for the R301A mutant. Interestingly, the R301K mutant displayed a slightly higher k(cat) than the parent PTDH, and a more modest increase in K(m) for phosphite (nearly 40-fold). Given these results, Arg301 may be involved in the binding and orientation of the phosphite substrate and/or play a catalytic role via electrostatic interactions. Three other residues in the active site region that are conserved in the PTDH orthologs but not DHDHs were identified (Trp134, Tyr139, and Ser295). The importance of these residues was also investigated by site-directed mutagenesis. All of the mutants had k(cat) values similar to that of the wild-type enzyme, indicating these residues are not important for catalysis.  相似文献   

19.
Four naturally occurring variants of the alcohol dehydrogenase enzyme (ADH; EC 1.1.1.1) from Drosophila melanogaster and D. simulans, with different primary structures, have been subjected to kinetic studies of ethanol oxidation at five temperatures. Two amino acid replacements in the N-terminal region which distinguish the ADH of D. simulans from the three ADH allozymes of D. melanogaster generate a significantly different activation enthalpy and entropy, and Gibbs free energy change. The one or two amino acid replacements in the C-terminal region between the ADH allozymes of D. melanogaster do not have such clear-cut effects. All four ADH variants show highly negative activation entropies. Sarcosine oxidation by the ADH-71k variant of D. melanogaster has an activation energy barrier similar to that of ethanol oxidation. Three amino acid differences between the ADH of D. simulans and the ADH-F variant of D. melanogaster influence the kappa cat and kappa cat/Kethm constant by a maximum factor of about 2 and 2.5, respectively, over the whole temperature range. Product inhibition patterns suggest a 'rapid equilibrium random' mechanism of ethanol oxidation by the ADH-71k, and the ADH of D. simulans.  相似文献   

20.
The effect of viscosogens on the enzyme-catalyzed rearrangement of chorismate to prephenate has been studied. The steady-state parameters kcat and kcat/Km for the monofunctional chorismate mutase from Bacillus subtilis (BsCM) decreased significantly with increasing concentrations of glycerol, whereas the 'sluggish' BsCM mutants C75A and C75S were insensitive to changes in microviscosity. The latter results rule out extraneous interactions of the viscosogen as an explanation for the effects observed with the wild-type enzyme. Additional control experiments show that neither viscosogen-induced shifts in the pH-dependence of the enzyme-catalyzed reaction nor small perturbations of the conformational equilibrium of chorismate can account for the observed effects. Instead, BsCM appears to be limited by substrate binding and product release at low and high substrate concentrations, respectively. Analysis of the kinetic data indicates that diffusive transition states are between 30 and 40% rate-determining in these concentration regimes; the chemical step must contribute to the remaining kinetic barrier. The relatively low value of the 'on' rates for chorismate and prephenate (approximately 2 x 106 m-1.s-1) probably reflects the need for a rare conformation of the enzyme, the ligand, or both for successful binding. Interestingly, the chorismate mutase domain of the bifunctional chorismate mutase-prephenate dehydratase from Escherichia coli, which has steady-state kinetic parameters comparable to those of BsCM but has a much less accessible active site, is insensitive to changes in viscosity and the reaction it catalyses is not diffusion-controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号