首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulation of the mitochondrial phosphate-dependent glutaminase activity is an essential component in the control of renal ammoniagenesis. Alterations in acid-base balance significantly affect the amount of the glutaminase that is present in rat kidney, but not in brain or small intestine. The relative rates of glutaminase synthesis were determined by comparing the amount of [35S]methionine incorporated into specific immunoprecipitates with that incorporated into total protein. In a normal animal, the rate of glutaminase synthesis constitutes 0.04% of the total protein synthesis. After 7 days of metabolic acidosis, the renal glutaminase activity is increased to a value that is 5-fold greater than normal. During onset of acidosis, the relative rate of synthesis increases more rapidly than the appearance of increased glutaminase activity. The increased rate of synthesis reaches a plateau within 5 days at a value that is 5.3-fold greater than normal. Recovery from chronic acidosis causes a rapid decrease in the relative rate of glutaminase synthesis, but a gradual decrease in glutaminase activity. The former returns to normal within 2 days, whereas the latter requires 11 days. The apparent half-time for glutaminase degradation was found to be 5.1 days and 4.7 days for normal and acidotic rats respectively. These results indicate that the increase in renal glutaminase activity associated with metabolic acidosis is due primarily to an increase in its rate of synthesis. From the decrease in activity that occurs upon recovery from acidosis, the true half-life for the glutaminase was estimated to be 3 days.  相似文献   

3.
Primary cultures of rat renal proximal tubular epithelial cells were used to characterize the biosynthesis and processing of the mitochondrial glutaminase. When the cells were labeled with [35S]methionine in the presence of 20 microM carbonylcyanide m-chlorophenylhydrazone, only a 72-kDa peptide, which co-migrates with the primary translation product of the glutaminase mRNA, was immunoprecipitated. At lower concentrations of carbonylcyanide m-chlorophenylhydrazone, the 68- and 65-kDa peptides that are characteristic of the mature glutaminase and a 71-kDa peptide were synthesized. Pulse-chase experiments suggest that the 72-kDa cytosolic precursor could be quantitatively chased to generate the mature mitochondrial species. The observed kinetics indicate that the 71-kDa species is an intermediate in the import pathway. In addition, the 65-kDa glutaminase peptide was synthesized more rapidly than the 68-kDa peptide, and the two peptides were produced in a final ratio of 3:1, respectively. These results suggest that one subunit of the tetrameric glutaminase may be subject to covalent modification. In vitro processing was also characterized by incubating isolated rat liver mitochondria with the glutaminase precursor that was produced by in vitro translation of acidotic rat renal poly(A+) RNA. This system produced an identical sequence of processing reactions. The in vitro formation of the 71-kDa intermediate required a transmembrane potential. Both the intermediate and the mature forms of the glutaminase were recovered in the mitochondria and were resistant to trypsin digestion. Thus, the glutaminase precursor is rapidly translocated across the inner mitochondrial membrane and initially processed to yield an intermediate. The intermediate is subsequently processed to yield the two peptides that constitute the mature enzyme.  相似文献   

4.
The quantity of translatable fatty acid synthetase mRNA in liver of rats subjected to different hormonal states was determined with a rabbit reticulocyte lysate cell-free translation system. Both membrane-free polysomal and total cellular poly (A)-containing RNA were translated. The level of translatable fatty acid synthetase mRNA was 11-fold or more lower in livers of diabetic rats than in similar animals treated with insulin. In contrast, both glucagon and dibutyl cyclic AMP caused a 3-fold reduction over controls in the amount of translatable fatty acid synthetase mRNA in livers of animals refed a fat-free diet for 12 hr. These changes are consistent with the previously reported alterations in the relative rates of fatty acid synthetase synthesis measured in vivo. This suggests that the changes in the amount of fatty acid synthetase that occur in liver in response to the above hormonal changes are primarily due to changes in the amount of mRNA coding for this enzyme.  相似文献   

5.
Starvation and diabetes both caused a marked increase in the concentration of hepatic phosphoenolpyruvate caroboxykinase mRNA while the administration of insulin to diabetic rats or refeeding glucose to starved animals caused a marked reduction in the levels of enzyme mRNA as measured by hybridization using a cDNA probe.l The Administration of dibutyryl cAMP to a starved-refed cat caused an 8-fold induction of phosphoenolpyruvate carboxykinase mRNA in 1 h. Triamcinolone plus acidosis induced the levels of enzyme mRNA in kidney 3-fold within 6 h, however, starvation for 24h had only marginal effects. In all of the above conditions, the levels of phosphoenolpyruvate carboxykinase mRNA measured by hybridization assay agreed well with the relative levels of translatable mRNA for the enzyme. The half-time of phosphoenolpyruvate carboxykinase mRNA, determined after the administration of either alpha-amanitin or cordycepin to starved animals, was approximately 40 min. However, cycloheximide either alone or together with cordycepin, not only prevented the decrease in phosphoenolpyruvate carboxykinase mRNA sequence abundance, but induced it 2-fold. Cycloheximide itself, when injected into 21-day fetal rats in utero caused an induction of enzyme mRNA equal to that noted when dibutyryl cAMP was administered. The mRNA for phosphoenolpyruvate carboxykinase is approximately 2.8 kb in length, but nuclei from the livers of diabetic rats contain a number of putative precursor RNA species for the enzyme, up to 6.5 kb in size, all containing a poly(A) tail. Two hours after refeedng glucose to a starved rat, these nuclear RNA species could no longer be detected by hybridization to our cDNA probe.  相似文献   

6.
7.
The regulation of the mitochondrial matrix enzyme, ornithine aminotransferase, by estrogen and triiodothyronine (T3) in rat kidney was examined using a cloned cDNA probe and in vitro translation of poly(A+) RNA. After a single, acute dose of either 17 beta-estradiol or T3, the rate of enzyme synthesis and the levels of translatable and hybridizable ornithine aminotransferase mRNA all increase in parallel. Levels of hybridizable mRNA were estimated by hybridization of randomly 32P-labeled RNA to filter-bound plasmid DNA. Maximal levels of induction by estrogen and T3 were about 15- and 3-fold, respectively. Lag times of at least 5 h and less than 3 h were observed for induction by T3 and estrogen. T3 and estrogen exert a synergistic effect in increasing ornithine aminotransferase mRNA levels. 16 h after T3 administration and 24 h after estrogen administration, a 1.6- and 13-fold increase in mRNA levels were observed. Both of these treatments in combination for the indicated time periods resulted in a 21-fold increase in ornithine aminotransferase mRNA. From the mRNA accumulation curves, half-lives of 10 to 14 h and 12 to 16 h were estimated for the mRNA after estrogen and T3 induction, respectively. These similar half-lives suggest that an increase in the rate of mRNA production is primarily responsible for the induction observed after estrogen administration.  相似文献   

8.
Poly(A)-rich RNA was isolated from the livers of acutely inflamed rats by extraction with guanidinium HCl and oligo(dT)-cellulose chromatography. After translation in a recticulocyte lysate and immunoprecipitation with a specific antiserum to alpha 2-macroglobulin a polypeptide with an apparent molecular weight of 162000 could be detected. The cell-free synthesis of alpha 2-macroglobulin was stimulated 8-fold by the addition of RNase inhibitor. Full-length alpha 2-macroglobulin polypeptide chains appeared after 35 min in the presence of 1.85 mM Mg2+ and 100 mM K+. A nucleotide number of about 5100 was estimated for alpha 2-macroglobulin by means of sucrose gradient centrifugation of poly(A)-rich RNA followed by translation in vitro and immunoprecipitation of alpha 2-macroglobulin. In normal liver alpha 2-macroglobulin mRNA represented about 0.0007% of total translatable RNA. Acute inflammation generated by intramuscular injection of turpentine led to a 66-fold increase in translatable alpha 2-macroglobulin mRNA after 18 h, followed by a rapid decrease. In accordance to the induction of alpha 2-macroglobulin mRNA serum concentrations of alpha 2-macroglobulin increased to about 2 mg/ml. Unlike alpha 2-macroglobulin mRNA serum alpha 2-macroglobulin levels remained unchanged up to 60 h.  相似文献   

9.
10.
Guinea pig kidney poly(A+) RNA was translated in reticulocyte lysates and wheat germ extracts. Antibodies to the holoenzyme (Na/K-ATPase) immunoprecipitated only a 96,000-dalton product which was identified as the alpha subunit with a molecular weight that was indistinguishable from that of mature alpha subunit. To explore the possibility that the primary translational product is integrated as such into membranes, guinea pig kidney poly(A+) RNA was translated in reticulocyte lysates in the presence of dog pancreas microsomes; two immunoprecipitated products were detected, the 96,000-dalton alpha subunit and a 135,000-dalton new component that was integrated into the microsomal membrane since it was completely resistant to extraction with alkali. Addition of purified alpha subunit inhibited the binding of antibody to the 135,000-dalton product and extraction with urea-sodium dodecyl sulfate recovered the 96,000-dalton product, implying that the 135,000-dalton product was an alpha-chi dimer. Translation of size-fractionated poly(A+) RNA yielded evidence that the 135,000-dalton product is encoded in two separate mRNAs. The integration in vitro of the alpha subunit is, therefore, dependent on the co-translational integration into the membranes of a smaller peptide (35,000 to 40,000 daltons) which is presumably the beta subunit. Evidence was also obtained that this mechanism is present in vivo by isolation of mRNA alpha from free polysomes, as well as detection of the cytosolic form of the alpha subunit in pulse-chase experiments in MDCK cells.  相似文献   

11.
A retinol-binding protein (RBP) cDNA clone was used to examine the effect of retinol status on the level of RBP mRNA in the liver, and to explore whether extrahepatic tissues contain RBP mRNA. In the first series of experiments, poly(A+) RNA was isolated from the livers of normal, retinol-depleted, and retinol-repleted rats and the levels of RBP mRNA in these samples were determined by both Northern blot and RNA Dot blot analyses. The levels of RBP mRNA in liver were similar in all three groups of rats. These findings confirm and extend previous studies which showed that retinol did not alter the in vivo rate of RBP synthesis or the translatable levels of RBP mRNA. In a second series of experiments, the RBP cDNA clone was used to survey poly (A+) RNA isolated from 12 different rat tissues for RBP mRNA by Northern blot analysis. We found that, along with the liver, many extrahepatic tissues contained RBP mRNA. Kidney contained RBP mRNA at a level of 5-10% of that of the liver, and the lungs, spleen, brain, stomach, heart, and skeletal muscle contained 1-3% of that of the liver. Translation of kidney poly (A+) RNA in rabbit reticulocyte lysates and immunoprecipitation of the translation products with anti-RBP antiserum resulted in a protein band of the same size as liver preRBP. These data suggest that RBP is synthesized in many extrahepatic tissues.It is possible that this extra-hepatically synthesized RBP may function in the recycling of retinol from these tissues back to the liver or to other target organs.  相似文献   

12.
High concentrations of KI were found to efficiently protect RNA against degradation by RNases. When a sufficient amount of solid KI was added to cell lysates or subcellular fractions (9 g per 10 ml), the solutions could be stored at room temperature for several days without measurable degradation of mRNA. Ribonucleic acids were selectively sedimented when these KI-containing solutions were centrifuged at 72,000 x g for 24 h. The RNA pellets were found to be readily dissolved in bidistilled water and the redissolved RNA could be immediately submitted to oligo(dT)-cellulose chromatography to isolate the poly(A)-containing RNA. However, extraction with phenol/chloroform was found to be necessary, if total RNA or poly(A)-minus RNA was to be analysed. This procedure was found to be superior to other methods currently in use - especially with respect to the isolation of intact, translatable high-molecular-weight mRNA.  相似文献   

13.
A specific polysome immunoadsorption procedure, employing soluble rabbit anti-NADP-GDH IgG and sheep anti-rabbit IgG covalently-linked to an insoluble cellulose matrix, was used to immunoselect polysomes translating mRNA for a chloroplastic ammonium-inducible NADP-GDH in fully induced cells of Chlorella sorokiniana. The immunoselected polysomes were dissociated, and the NADP-GDH mRNA was recovered by oligo (dT)cellulose chromatography. The translatable NADP-GDH mRNA was estimated to be 0.07 and 90% of the total polysomal poly(A)+RNA before and after immunoselection of the polysomes, respectively. The immunoadsorption procedure resulted in an 83% recovery and 1,291-fold purification of translatable NADP-GDH mRNA. In vitro translation of the immunoselected poly(A)+RNA yielded a single radioactive protein (on sodium dodecyl sufate polyacrylamide gels) with a molecular weight of 58,500, i.e. size of the putative precursor-protein of the NADP-GDH subunit in the holoenzyme in fully induced cells. The purified NADP-GDH mRNA was used for synthesis of a high proportion of nearly full-length single-stranded cDNA and double-stranded cDNA molecules.  相似文献   

14.
Total rat liver poly(A+)-RNA has been isolated from phenobarbital-treated rats and fractionated on sucrose gradients to enrich for glutathione S-transferase B mRNA. Poly(A+)-RNA fractions were assayed for glutathione S-transferase B mRNA activity by in vitro translation and those fractions enriched in glutathione S-transferase B mRNA were used as a template for cDNA synthesis. The cDNA was cloned into the PstI site of pBR322 by G-C tailing. Bacterial clones harboring inserts complementary to glutathione S-transferase mRNA were identified by colony hybridization using a [32P]cDNA probe reverse transcribed from poly(A+)-RNA enriched significantly in glutathione S-transferase B mRNA and by hybrid-select translation. Two recombinant clones, pGTB6 and pGTB15 hybrid-selected the mRNAs specific for the Ya and Yc subunits, indicating these two mRNAs share significant sequence homology. Radiolabeled pGTB6 was utilized in RNA gel-blot experiments to determine that the size of glutathione S-transferase B mRNA is 980 nucleotides and the degree of induction of the mRNA in response to 3-methylcholanthrene administration is threefold.  相似文献   

15.
Immune serum was prepared against phosphate-dependent glutaminase purified from rat kidney and was used to investigate the cause of increased renal glutaminase activity in acidotic rats. Crude kidney homogenates from acidotic rats exhibited a fourfold greater specific activity for phosphate-dependent glutaminase. The glutaminase was solubilized initially by lyophilization of borate treated mitochondria with a 40–60% recovery and with maintenance of threefold difference in specific activity. Both preparations showed the same equivalence point in a quantitative precipitin experiment. To confirm these results, phosphate-dependent glutaminase was also solubilized by treatment of mitochondria isolated from normal and acidotic rat kidney cortex with 1% Triton X-100. The two preparations exhibited a fivefold difference in specific activity and again showed the same equivalence point in a quantitative precipitin experiment. These results indicate that the cause of increased phosphate-dependent glutaminase activity during acidosis is due to the presence of an increased amount of this enzyme. The antiserum prepared against the kidney phosphate-dependent glutaminase did not crossreact with glutaminase solubilized from rat liver mitochondria. But, rat brain mitochondria do contain a phosphate-dependent glutaminase that is immunologically identical to the enzyme from rat kidney.  相似文献   

16.
Ammonia production from glutamine was studied in slices from non-acidotic and acidotic rat kidneys. Slices from non-acidotic kidneys made 53% as much ammonia from D-glutamine as from L-glutamine during the initial 15 min of incubation. Thereafter the production rate from the L-isomer accelerated while that from the D-isomer remained constant. The accelerated rate of ammonia production from L-glutamine was dependent upon tissue swelling since prevention of swelling reduced the production rate. Swelling activates the mitochondrial glutaminase I pathway as evidenced by the rise in ammonia produced per glutamine utilized ratio as well as by the accelerated rate of CO2 production derived from the oxidative disposal of glutamin's carbon skeleton. Cortical slice swelling activates the mitochondrial pathway in a manner not unlike that seen in vivo during chronic acidosis and may reflect increased permeability to glutamine. Acidotic rat kidneys are not swollen in vivo while cortical slices initially produce 4-fold more ammonia than do non-acidotic slices. After 15 min, this 4-fold difference in total ammonia production drops to only a 2-fold difference due to the swelling-induced activation of the mitochondrial pathway. Consequently, slice swelling obliterates the important fact that ammonia production by the mitochondrial pathway is 15-fold greater in acidotic than in non-acidotic kidneys.  相似文献   

17.
Ammonia production from glutamine was studied in slices from non-acidotic and acidotic rat kidneys. Slices from non-acidotic kidneys made 53% as much ammonia from d-glutamine as from l-glutamine during the initial 15 min of incubation. Thereafter the production rate from the l-isomers accelerated while that from the d-isomers remained constant. The accelerated rate of ammonia production from l-glutamine was dependent upon tissue swelling since prevention of swelling reduced the production rate. Swelling activates the mitochondrial glutaminase I pathway as evidenced by the rise in ammonia produced per glutamine utilized ratio as well as by the accelerated rate of CO2 production derived from the oxidative disposal of glutamine's carbon skeleton. Cortical slice swelling activates the mitochondrial pathway in a manner not unlike that seen in vivo during chronic acidosis and may reflect increased permeability to glutamine.Acidotic rat kidneys are not swollen in vivo while cortical slices initially produce 4-fold more ammonia than do non-acidotic slices. After 15 min, this 4-fold difference in total ammonia production drops to only a 2-fold difference due to the swelling-induced activation of the mitochondrial pathway. Consequently, slice swelling obliterates the important fact that ammonia production by the mitochondrial pathway is 15-fold greater in acidotic than in non-acidotic kidneys.  相似文献   

18.
Messenger RNA activities of four acute phase proteins during inflammation   总被引:8,自引:0,他引:8  
Poly(A)+ RNA isolated from the livers of normal rats and of rats suffering from an acute inflammation was translated in a cell-free translation system from rabbit reticulocytes. The translation products were immunoprecipitated with specific antisera against alpha 1-acid glycoprotein, alpha 2-macroglobulin, transferrin, alpha 1-proteinase inhibitor and albumin. 15 to 21 h after intramuscular injection of turpentine 73-, 66-, 2.8-, and 2-fold increases in translatable mRNAs for alpha 1-acid glycoprotein, alpha 2-macroglobulin, transferrin and alpha 1-proteinase inhibitor, respectively, were observed. For albumin a decrease in translatable mRNA to about 30% of controls was measured.  相似文献   

19.
The relative levels of translatable messenger RNA for isocitrate lyase and malate synthase were determined in the dry seed and for the first seven days of development of cucumber cotyledons. After extraction and quantification of total and poly(A)-rich RNA each day, the RNA fractions were translated in an optimized wheat germ system and the specific polypeptides were immunoprecipitated quantitatively. The radiolabeled isocitrate lyase and malate synthase polypeptides were then fractionated on dodecylsulphate/polyacrylamide gels, visualized by exposure to X-ray film and quantified densitometrically. The relative levels of translatable messenger RNA for these enzymes rise and fall with a developmental program similar to the enzyme activities, but preceding the latter by about one day. This implies that the rise in enzyme activity is dependent upon a prior postgerminative increase in translatable messenger RNA for the enzymes. These studies also suggest that messenger RNA levels may be regulated, at least in part, by light.  相似文献   

20.
The nutritional regulation of rat liver glucose-6-phosphate dehydrogenase was studied using a cloned DNA complementary to glucose-6-phosphate dehydrogenase mRNA. The recombinant cDNA clones were isolated from a double-stranded cDNA library constructed from poly(A+) RNA immunoenriched for glucose-6-phosphate dehydrogenase mRNA. Immunoenrichment was accomplished by adsorption of polysomes with antibodies directed against glucose-6-phosphate dehydrogenase in conjunction with protein A-Sepharose and oligo(dT)-cellulose chromatography. Poly(A+) RNA encoding glucose-6-phosphate dehydrogenase was enriched approximately 20,000-fold using these procedures. Double-stranded cDNA was synthesized from the immunoenriched poly(A+) RNA and inserted into pBR322 using poly(dC)-poly(dG) tailing. Escherichia coli MC1061 was transformed, and colonies were screened for glucose-6-phosphate dehydrogenase cDNA sequences by differential colony hybridization. Plasmid DNA was purified from clones which gave positive signals, and the identity of the glucose-6-phosphate dehydrogenase clones was verified by hybrid-selected translation. A collection of glucose-6-phosphate dehydrogenase cDNA plasmids with overlapping restriction maps was obtained. Northern blot analysis of rat liver poly(A+) RNA using nick-translated, 32P-labeled cDNA inserts revealed that the glucose-6-phosphate dehydrogenase mRNA is 2.3 kilobases in length. RNA blot analysis showed that refeeding fasted rats a high carbohydrate diet results in a 13-fold increase in the amount of hybridizable hepatic glucose-6-phosphate dehydrogenase mRNA which parallels the increase in enzyme activity. These results suggest that the nutritional regulation of hepatic glucose-6-phosphate dehydrogenase occurs at a pretranslational level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号