首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using multi-frequency cross-correlation fluorometry, the monomer fluorescence lifetime of 1-palmitoyl-2-[10-(1-pyrenyl)decanoyl)phosphatidylcholine (Py-PC) was employed to determine the lateral diffusion constant (DT) of dioleoylphosphatidylethanolamine (DOPE) in both the lamellar (L alpha) and the inverted hexagonal (HII) phases. The values of DT increased with temperature in both phases. However, the rate of increase of DT declined abruptly at approximately 10-13 degrees C (L alpha -HII transition temperature), as indicated by the existence of an inflection point in the log (DT/T) vs. 1/T plot. This observation suggests that the translational motion of lipids in the HII phase is lower than that in the L alpha phase upon temperature extrapolation. Lipid perturbants, cholesterol and diacylglycerol, were found to destabilize the L alpha phase of DOPE. This was demonstrated by a down-shift of the inflection point in the log(DT/T) vs. 1/T plot in the presence of the perturbants. Both cholesterol and 1,2-dioleoyl-sn-glycerol (diolein) decreased the lateral diffusion constant in both phases. Diolein promoted the HII phase more effectively than did the cholesterol. This is explained by an intrinsic wedge-shape geometry of diolein which strongly favors the formation of inverted cylindrical packing of the lipids.  相似文献   

2.
P L Yeagle  A Sen 《Biochemistry》1986,25(23):7518-7522
The effects of chaotropic agents on the lamellar to hexagonal II phase transition of soy phosphatidylethanolamine were examined. Guanidine hydrochloride, urea, and NaSCN were used as chaotropic agents. In each case, the lamellar phase was stabilized by the presence of the chaotropic agent. In the case of NaSCN, the temperature of the lamellar to hexagonal phase transition of soy phosphatidylethanolamine was increased by more than 60 degrees C. Guanidine hydrochloride was capable of substantially reducing the aggregation of phosphatidylethanolamine vesicles. These data lead to a thermodynamic understanding of the lamellar to hexagonal phase transition.  相似文献   

3.
The steady-state anisotropy of trimethylammonium diphenylhexatriene fluorescence has been used to monitor the thermotropic lamellar to HII hexagonal phase transition in an unsaturated phosphatidylethanolamine. The transition is observed in lipid aggregates when they are heated above the transition temperature Th, as well as in diluted liposomes after aggregation above Th. Changes in fluorescence anisotropy are not observed with Ca(++)-induced fusion of phosphatidylserine vesicles, a process not involving hexagonal phase formation.  相似文献   

4.
M Caffrey 《Biochemistry》1985,24(18):4826-4844
A study of the kinetics and mechanism of the thermotropic lamellar gel/lamellar liquid-crystalline and lamellar/inverted hexagonal phase transition in dihexadecylphosphatidylethanolamine (DHPE) at various hydration levels has been carried out. Measurements were made by using a real-time X-ray diffraction method at the Cornell High Energy Synchrotron Source. This represents an extension of an earlier study concerning the lamellar gel/lamellar liquid-crystalline phase transition in dipalmitoylphosphatidylcholine [Caffrey, M., & Bilderback, D. H. (1984) Biophys. J. 45, 627-631]. With DHPE, the chain-melting and the nonbilayer transitions were examined under active heating and passive cooling conditions by using a temperature jump to effect phase transformation. Measurements were made at hydration levels ranging from 0% to 60% (w/w) water, and in all cases, the transitions were found to be repeatable, be reversible, and have an upper bound on the transit times (time required to complete the transition) of less than or equal to 3 s. The shortest transit time recorded for the chain-melting and lamellar/hexagonal transitions was less than 1 s. At 8% (w/w) water, the transit times were still on the order of seconds even though the transition does not involve the intermediate L alpha phase. Note, the measured transit times are gross values incorporating the intrinsic transit time in addition to the time required to heat or cool the sample through the transition temperature range and to supply or remove the latent heat of the transition. Regardless of the direction of the transition, both appear to be two state to within the sensitivity limits of the real-time method. From simultaneous wide- and low-angle measurements at the lamellar chain-melting transition, loss of long-range order in the lamellar gel phase appears to precede the chain-melting process. On the basis of the real-time X-ray diffraction measurements, a mechanism is proposed for the lamellar/hexagonal phase transition. The mechanism does not involve large or energetically expensive molecular rearrangements, leads directly to a hexagonal lattice coplanar with the lamellar phase, incorporates facile reversibility, repeatability, and cooperativity, accounts for an observed, apparent memory in the hexagonal phase of the original lamellar phase orientation, and is consistent with the experimental observation of a predominantly two-state transition. In conjunction with the kinetic measurements, the DHPE/water phase diagram was constructed. At and above 12% (w/w) water, the thermotropic transition sequence is L beta'/L alpha/HII.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The orientational order and rotational dynamics of 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl] carbon yl]-3-sn-phosphatidylcholine (DPH-PC) in dilinoleoylphosphatidylethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) binary lipid mixtures were investigated. A previous study (Biochim. Biophys. Acta 731 (1983) 177) indicated that the empirical phase diagram of POPC/DLPE can roughly be divided into three zones. They are the lamellar (15% PC and higher), intermediate (5-15% PC) and inverted hexagonal (0-5% PC) phases. As the lipids changed from the lamellar to intermediate phase, the order parameter increased at all temperatures (1-50 degrees C). On the contrary, the rotational diffusion decreased at high temperatures (20-50 degrees C) but increased at low temperatures (1-10 degrees C). These results indicate that the intermediate phase is in a stressed state at high temperatures but in a highly mobile amorphous state at low temperatures. As the lipid progressed from the intermediate toward hexagonal phase, the order parameter decreased abruptly at all temperatures. The ratio of order parameter in the intermediate phase to that in the hexagonal phase was calculated. This ratio was found to increase linearly with temperature, indicating that a distinct change in the packing symmetry of lipids occurred as temperature increased. From the intermediate to hexagonal phase, the rotational diffusion increased slightly at high temperatures but declined abruptly at low temperatures. These results further agreed with the stressed and amorphous natures of the intermediate phases as described above.  相似文献   

6.
The microviscosity of unilamellar vesicles of dimyristoyl-3-sn-phosphatidylcholine and that of phosphatidylcholine . apoprotein complexes was followed by fluorescence depolarization after labeling with 1,6-diphenyl-1,3,5-hexatriene. The transition temperature from gel-crystalline to liquid-crystalline phase in 24 degrees C for the dimyristoyl-phosphatidylcholine vesicles and is shifted to around 30 degrees C in the complexes between phosphatidylcholine and apoA-I, apoA-II, apoC-I, apoC-III proteins while the cooperativity of the transition is decreased. At temperatures below the transition of the phospholipid, the microviscosity of the complexes of phosphatidylcholine with apoA-I, apoA-II and apoC-I proteins is lower than that of the phosphatidylcholine, while the opposite effect is observed above 30 degrees C. The phosphatidylcholine . apoprotein complexes isolated on a Sepharose 6B column have a molecular weight around 100 000 and a phosphatidylcholine/apoprotein ratio of 2--2.6 (w/w). The microviscosity measurments at 35 degrees C performed after elution of the column enable the complex to be detected. The size and microviscosity of the apoprotein . phosphatidylcholine complex is compatible with a model where the vesicular structure has disappeared and the amino acid side chains present hydrophobic interaction with the phosphatidylcholine acyl chains.  相似文献   

7.
8.
The specific volumes of seven 1,2-diacyl-sn-glycero-3-phosphocholines with symmetric, unbranched acyl chains containing one, four, or six cis double bonds per chain, or with a saturated sn-1 chain and one, four, or six cis double bonds in the sn-2 chain were determined by the neutral buoyancy method. Experiments were conducted in the liquid crystalline lamellar phase over the temperature range from 5 to 35 degrees C. It is demonstrated that the molecular volume of phosphatidylcholines can be well approximated as the sum of a constant volume of the polar lipid head region and the temperature-dependent volumes of hydrocarbon chain CH2, CH, and terminal CH3 groups. A linear dependence of chain segment volumes on temperature was observed. A self-consistent set of partially temperature-dependent volumes is obtained that allows prediction of phosphatidylcholine molecular volumes within very tight error margins.  相似文献   

9.
The specific volumes of seven 1,2-diacyl-sn-glycero-3-phosphocholines with symmetric, unbranched acyl chains containing one, four, or six cis double bonds per chain, or with a saturated sn-1 chain and one, four, or six cis double bonds in the sn-2 chain were determined by the neutral buoyancy method. Experiments were conducted in the liquid crystalline lamellar phase over the temperature range from 5 to 35 °C. It is demonstrated that the molecular volume of phosphatidylcholines can be well approximated as the sum of a constant volume of the polar lipid head region and the temperature-dependent volumes of hydrocarbon chain CH2, CH, and terminal CH3 groups. A linear dependence of chain segment volumes on temperature was observed. A self-consistent set of partially temperature-dependent volumes is obtained that allows prediction of phosphatidylcholine molecular volumes within very tight error margins.  相似文献   

10.
By the use of frequency domain cross-correlation fluorometry, the fluorescence lifetime of the water soluble probe 8,1-anilinonapthalene sulfonic acid (ANS) in aqueous dispersions of dioleoylphosphatidylethanolamine (DOPE) and phosphatidylethanolamine transphosphatidylated from egg phosphatidylcholine (TPE) was measured. The orientational order parameter and rotational diffusion constant of the lipophilic probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) were also determined in TPE dispersions. In agreement with a previous study on DOPE (Cheng (1989) Biophys. J. 55, 1025-1031), abrupt changes in both the order packing and rotational diffusion constant were found at the lamellar liquid crystalline (L alpha) to inverted hexagonal (HII) phase transition of TPE. Owing to the subnanosecond resolution capability of this frequency domain fluorometric technique, the heterogeneous fluorescence decay of ANS was resolved into three distinct components with different decay lifetimes (tau's). They were 0 less than tau less than 0.5 ns, 2 less than tau less than 9 ns and tau greater than 15 ns. These lifetime regions were attributed to the partitioning of ANS into the bulk aqueous medium, the lipid/water interface and the lipid hydrocarbon region, respectively. These classifications of lifetime regions were further supported by the sensitivity of those lifetime components with the solvent isotopic shift of D2O. Similar to the changes of orientational order and rotational diffusion of lipophilic probe, the lifetime and intensity fraction of ANS associated with the lipid/water interfacial region declined abruptly at the L alpha-HII transition of both DOPE and TPE. This observation suggested that a dehydration of the lipid headgroup surface occurs at the L alpha-HII transition. This study provided evidence that both the lipid headgroup surface hydration and the lipid dynamics change drastically as a result of the macroscopic rearrangement of lipids at the L alpha-HII transition.  相似文献   

11.
The phase transition in multilamellar dimyristoylphosphatidylcholine (DMPC) vesicles was studied during exposure to continuous wave 1.0-GHz microwave radiation. Fluorescence depolarization measurements using a lipid-seeking molecular probe, diphenylhexatriene (DPH). were performed as a function of temperature. Semilog plots of microviscosity versus temperature illustrate the phase transition which shows a 5°C shift when the vesicles are treated with chloroform as a positive control. No shift of the phase transition was found during exposure to microwave radiation at specific absorption rates between 1 and 30 W/kg. Samples were exposed in a rectangular transmission line (TEM cell), and specific absorption rates were calculated from electrical measurements of incident, reflected, and transmitted power. Samples were exposed to increasing intensities of radiation, while the temperature was maintained at either 23.5 or 25.5 °C; these temperatures represented the two ends of the phase transition region for these vesicles. No statistically significant difference was found between exposed and control samples. These results are in contrast to those of others using laser Raman spectroscopy to measure the phase transition in similar multilamellar vesicles exposed to microwave radiation.  相似文献   

12.
Aspects of osmotic properties of liposomes, prepared from synthetic lecithin, above, at and below the gel to liquid crystalline phase transition temperature are described. The experiments show that liposomal membranes with their lipids in the gel state are still permeable to water. The rate of water permeation changes drastically on passing the transition temperature. The water permeation has activation energies of 9.5 +/- 1.28 and 26.4 +/- 0.9 kcal/mol above and below the transition temperature, respectively, indicating that the diffusion processes take place by different mechanisms. With respect to the barrier properties of the liposomes in the vicinity of the transition temperature, the following conclusions can be made. (1) Studying the osmotic shrinkage of liposomes at a fixed temperature near the transition point, the experiments indicate that dimyristoyl phosphatidylcholine membranes are highly permeable to glucose under these conditions, where liquid and solid domains co-exist. Under the same conditions the osmotic experiments did not indicate a strong increase in glucose permeability of dipalmitoyl phosphatidylcholine membranes as compared to the situation above and below the transition temperature. (2) On the other hand, perturbations of the phase equilibrium by temperature varations resulted in a marked increase of the glucose permeation through dipalmitoyl phosphatidylcholine bilayers. Once a new phase equilibrium of liquid and solid regions is established the permeation rate of glucose is much less.  相似文献   

13.
G Wang  S Li  H N Lin    C Huang 《Biophysical journal》1997,73(1):283-292
We have semisynthesized 19 species of mixed-chain phosphatidylethanolamines (PEs) in which the sn-1 acyl chain is derived from saturated fatty acids with varying chain lengths and the sn-2 acyl chain has different chain lengths but contains 0, 1, and 2 cis double bond(s). The gel-to-liquid crystalline phase transition temperatures (Tm) of lipid bilayers prepared from these 19 mixed-chain PEs were determined calorimetrically. When the Tm values are compared with those of saturated and monounsaturated counterparts, a common Tm profile is observed in the plot of Tm versus the number of cis double bonds. Specifically, a marked stepwise decrease in Tm is detected as the number of cis double bonds in the sn-2 acyl chain of the mixed-chain PE is successively increased from 0 to 1 and then to 2. The large Tm-lowering effect of the acyl chain unsaturation can be attributed to the increase in Gibbs free energy of the gel-state bilayer as a result of weaker lateral chain-chain interactions. In addition, we have applied molecular mechanics calculations to simulate the molecular structure of dienoic mixed-chain C(X):C(Y:2 delta n,n+3)PE in the gel-state bilayer, thus enabling the three independent structural parameters (N, delta C, and LS) to be calculated in terms of X, Y, and n, which are intrinsic quantities of C(X):C(Y:2 delta n,n+3)PE. When the Tm values and the corresponding N and delta C values of all dienoic mixed-chain PEs under study are first codified and then analyzed statistically by multiple regressions, the dependence of Tm on the structural parameters can be described quantitatively by a simple and general equation. The physical meaning and the usefulness of this simple and general equation are explained.  相似文献   

14.
The effect of phase behaviour (hexagonal II phase and lamellar phase) on the peroxidation of membrane phospholipids has been investigated in dilinoleoyl phosphatidylcholine (DLPC)/dilinoleoyl phosphatidylethanolamine (DLPE) aqueous dispersions. Peroxidation was initiated with a water-soluble radical inducer 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPN). The phospholipid morphology was monitored by 31P-nuclear magnetic resonance (NMR). Phospholipid hydroperoxides (PCOOH and PEOOH) were determined by chemiluminescence high-performance liquid chromatography (CL-HPLC). In pH-induced phase transition systems, DLPE in the bilayer state was much less oxidized than in the hexagonal II state. In composition-induced phase transition systems, the formation of total hydroperoxides and the consumption of alpha-tocopherol in the hexagonal II phase were greater than in the bilayer phase. These data suggest that the hexagonal II phase is more sensitive to hydroperoxidation than the bilayer phase in phospholipid aqueous dispersions.  相似文献   

15.
The kinetics of the thermotropic lamellar gel (L beta')/lamellar liquid crystal (L alpha) and L alpha/inverted hexagonal (HII) phase transitions in fully hydrated dihexadecylphosphatidylethanolamine (DHPE) have been studied. Measurements were made by using time-resolved x-ray diffraction (TRXRD) to monitor progress of the transitions. In these studies microwave energy at 2.5 GHz was used to increase the sample temperature rapidly and uniformly through the phase transition regions. The L beta'/L alpha and L alpha/HII transitions of DHPE were examined under active microwave heating and passive cooling. The transitions were found to be repeatable and reversible, and to have an upper bound on the time required to complete the transition of less than 3 s. Regardless of the direction of the transition, both phase transitions appeared to be two-state with no accumulation of intermediates to within the sensitivity limits of the TRXRD method. The rate and amplitude of the temperature jump can be controlled by regulating microwave radiation input power. A temperature jump rate of 29 degrees C/s was obtained at a final microwave power setting of 120 W. Comparisons between previously reported fluid flow (Caffrey, M. 1985. Biochemistry. 24:4826-4844) and microwave heating studies suggest that the determination of limiting transit times will require faster heating.  相似文献   

16.
D Salom  C Abad  L Braco 《Biochemistry》1992,31(34):8072-8079
We have investigated the conformational adaptability of gramicidin A incorporated into reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water, a so far unexplored "host" membrane-mimetic model system for this peptide. A high-performance liquid chromatographic strategy previously developed for the study of gramicidin in phospholipid vesicles and normal micelles [Ba?ó et al. (1989) FEBS Lett. 250, 67; Ba?ó et al. (1991) Biochemistry 30, 886] has been successfully extended to this system. The method has permitted the separation of peptide conformational species, namely, double-stranded dimers and monomers, and an accurate quantitation of their proportion in the inverted micellar environment. It has been demonstrated that, once inserted in the micelle, the double-stranded dimers undergo a dissociation process toward a thermodynamically stable monomeric configuration, whose monomerization rate constant (k1) is dependent in a bell-shaped manner on the water:surfactant mole ratio, w0. A tight correlation between k1 and the double-stranded dimer backbone conformation has been found from the comparison of chromatographic and circular dichroism data. In addition, fluorescence experiments indicate that the peptide tryptophans are in a rather nonpolar environment, with a restricted accessibility to water-soluble quenchers such as acrylamide.  相似文献   

17.
18.
The kinetics and mechanism of the barotropic lamellar gel (L beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) has been studied using time-resolved x-ray diffraction (TRXRD). The phase transition was induced by pressure jumps of varying amplitudes in both the pressurization and depressurization directions at controlled temperature (78 degrees C). Both low- and wide-angle diffracted x rays were recorded simultaneously in live time using an x-ray-sensitive image intensifier coupled to a CCD camera and Super-VHS videotape recorder. Such an arrangement allowed for the direct and quantitative characterization of the long- (lamellar repeat spacing) and short-range order (chain packing) during a kinetic experiment. The image-processed live-time x-ray diffraction data were fitted using a nonlinear least-squares model, and the parameters of the fits were monitored continuously throughout the transition. The pressure-induced transitions from the L alpha to the L beta' phase and from the L beta' to the L alpha phase was two-state (no formation of intermediates apparent during the transition) to within the sensitivity limits of the method. The corresponding transit time (the time during which both phases coexist) associated with the long- and short-range order of the pressurization-induced L alpha-to-L beta' phase transition decreased to a limiting value of approximately 50 ms with increasing pressure jump amplitude. This limiting value was close to the response time of the detector/recording system. Thus, the intrinsic transit time of this transition in fully hydrated DHPE at 78 degrees C was less than or equal to 50 ms. In contrast, the depressurization-induced L beta'-to-L alpha phase transition was slower, taking approximately 1 s to complete, and occurred with no obvious dependence of the transit time on pressure jump amplitude. In the depressurization jump experiment, the lipid responded rapidly to the pressure jump in the L beta' phase up to the rate-determining L beta'-to-L alpha transition. Such behavior was examined carefully, as it could complicate the interpretation of phase transition kinetic measurements.  相似文献   

19.
A liquid crystalline phase in spermidine-condensed DNA.   总被引:1,自引:1,他引:0  
Over a large range of salt and spermidine concentrations, short DNA fragments precipitated by spermidine (a polyamine) sediment in a pellet from a dilute isotropic supernatant. We report here that the DNA-condensed phase consists of a cholesteric liquid crystal in equilibrium with a more concentrated phase. These results are discussed according to Flory's theory for the ordering of rigid polymers. The liquid crystal described here corresponds to an ordering in the presence of attractive interactions, in contrast with classical liquid crystalline DNA. Polyamines are often used in vitro to study the functional properties of DNA. We suggest that the existence of a liquid crystalline state in spermidine-condensed DNA is relevant to these studies.  相似文献   

20.
A P Mencke  M Caffrey 《Biochemistry》1991,30(9):2453-2463
By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号