首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new amine-oxide hapten was employed as an antigen, producing seven monoclonal antibodies (mAbs) from a panel of 20 that catalyzed paraoxon hydrolysis. The current hapten design differs from that previously described in that the molecule is inherently more flexible than its constrained predecessor. One of the seven antibody catalysts, mAb 1H9, showed the highest activity and was selected for detailed study. At pH = 8.77, the catalytic hydrolysis of paraoxon by mAb 1H9 followed Michaelis Menten kinetics affording a k(cat) = 3.73 x 10(-4) min(-1) and a Km = 1.12 mM with a rate acceleration k(cat)/k(uncat) = 56. The hapten was found to be a competitive inhibitor of antibody-catalyzed paraoxon hydrolysis with a Ki = 0.54 mM. A comparison of both the number and proficiency of antibody catalysts obtained when utilizing a flexible versus constrained hapten indicates that, for paraoxon hydrolysis, constrained haptens elicit superior catalysts, suggesting that further development should begin with the use of constrained haptens in producing more proficient antibody catalysts for paraoxon hydrolysis.  相似文献   

2.
BACKGROUND: Small organic molecules coupled to a carrier protein elicit an antibody response on immunisation. The diversity of this response has been found to be very narrow in several cases. Some antibodies also catalyse chemical reactions. Such catalytic antibodies are usually identified among those that bind tightly to an analogue of the transition state (TSA) of the relevant reaction; therefore, catalytic antibodies are also thought to have restricted diversity. To further characterise this diversity, we investigated the structure and biochemistry of the catalytic antibody 7C8, one of the most efficient of those which enhance the hydrolysis of chloramphenicol esters, and compared it to the other catalytic antibodies elicited in the same immunisation. RESULTS: The structure of a complex of the 7C8 antibody Fab fragment with the hapten TSA used to elicit it was determined at 2.2 A resolution. Structural comparison with another catalytic antibody (6D9) raised against the same hapten revealed that the two antibodies use different binding modes. Furthermore, whereas 6D9 catalyses hydrolysis solely by transition-state stabilisation, data on 7C8 show that the two antibodies use mechanisms where the catalytic residue, substrate specificity and rate-limiting step differ. CONCLUSIONS: Our results demonstrate that substantial diversity may be present among antibodies catalysing the same reaction. Therefore, some of these antibodies represent different starting points for mutagenesis aimed at boosting their activity. This increases the chance of obtaining more proficient catalysts and provides opportunities for tailoring catalysts with different specificities.  相似文献   

3.
New structural data on nonhydrolytic antibody catalysts gained over the past two years confirm that antibodies elicited against transition-state analogues function by differential stabilisation of the transition-state over the ground state through electrostatic, van der Waals, cation-pi and hydrogen-bonding interactions. The lack of chemical catalysis correlates with the low catalytic efficiency. Novel strategies that precisely position a key functional residue in the antibody catalyst combining site have therefore emerged, as demonstrated by crystallographic studies. Whereas antibodies with a bulky residue at position H100c of hypervariable loop H3 adopt different cavity shapes, other antibodies share a common deep combining site. This structural restriction might reflect the use of similar hydrophobic haptens to generate the antibody; novel hapten design or new immunisation strategies may, in the future, lead to more structurally diversified active sites.  相似文献   

4.
A novel system of signal enhancement is presented in which every labeled antibody is capable of generating a signal. Three chemiluminescent acridinium-9-carboxamide haptens (1, 2, and 3) which incorporated differences in charge and location of the linker were designed and synthesized. Anti-acridinium polyclonal antibodies for each hapten were screened using surface plasmon resonance instrumentation to determine specificity for each hapten. Anti-acridinium 2 antibodies were found to be non-cross-reactive to acridinium 1. This property was exploited to design secondary antibody conjugates which would bind to primary antibodies labeled with 2 yet could still be labeled with the structurally similar acridinium 1. Consequently, both layers contributed to the overall chemiluminescent signal. This format is an advance over other signal amplification formats which employ non-signal-generating, labeled antibodies to construct multilayered systems.  相似文献   

5.
Cocaine use remains a serious problem, despite intensive efforts to curb abuse. Given the lack of effective pharmacotherapeutics for the treatment of cocaine addiction, research groups have targeted immunopharmacotherapy in which the drug user's immune system is trained to recognize and remove cocaine prior to entry into the central nervous system. Antibody cocaine esterases and simple binders have been procured, however, rates and/or affinities still need improvement before clinical trials are warranted. Herein, we report the synthesis and testing of two new haptens for the procurement of cocaine binding antibodies and cocaine esterase catalytic antibodies. Central in the design of these haptens was the placement of the linker functionality distal from the anticipated cocaine epitopes in an attempt to bury the hapten deep within an antibody combining site to gain possible entropic and enthalpic advantages.  相似文献   

6.
Catalytic antibodies have emerged as powerful tools for the efficient and specific catalysis of a wide range of chemical transformations. Generating antibody catalysts that achieve enzymatic efficiency remains a challenging task, which has long been the source of great interest both in the design of more effective haptens for immunization and in the development of more direct and efficient screening methods for the selection of antibodies with desired catalytic capacities. In this review, we describe the development of different hapten design strategies, including a transition state analog (TSA) approach, 'bait-and-switch' catalysis, and reactive immunization. We also comment on recent developments in the screening process that allow for a more efficient identification of antibody catalysts.  相似文献   

7.
Given the need for further improvements in anti-cocaine vaccination strategies, a chimeric hapten (GNET) was developed that combines chemically-stable structural features from steady-state haptens with the hydrolytic functionality present in transition-state mimetic haptens. Additionally, as a further investigation into the generation of an improved bifunctional antibody pool, sequential vaccination with steady-state and transition-state mimetic haptens was undertaken. While GNET induced the formation of catalytically-active antibodies, it did not improve overall behavioral efficacy. In contrast, the resulting pool of antibodies from GNE/GNT co-administration demonstrated intermediate efficacy as compared to antibodies developed from either hapten alone. Overall, improved antibody catalytic efficiency appears necessary to achieve the synergistic benefits of combining cocaine hydrolysis with peripheral sequestration.  相似文献   

8.
The sensitivity of antibody/hapten-based labeling systems is limited by the natural affinity ceiling of immunoglobulins. Breaking this limit by antibody engineering is difficult. We thus attempted a different approach and investigated if the so-called bridge effect, a corecognition of the linker present between hapten and carrier protein during antibody generation, can be utilized to improve the affinity of such labeling systems. The well-known haptens 2,4-dinitrophenol (2,4-DNP) and 2,4-dichlorophenoxyacetic acid (2,4-D) were equipped with various linkers, and the resulting affinity change of their cognate antibodies was analyzed by ELISA. Anti-2,4-DNP antibodies exhibited the best affinity to their hapten when it was combined with aminobutanoic acid or aminohexanoic acid. The affinity of anti-2,4-D antibodies could be enhanced even further with longer aliphatic spacers connected to the hapten. The affinity toward aminoundecanoic acid-2,4-D derivatives, for instance, was improved about 100-fold compared to 2,4-D alone and yielded detection limits as low as 100 amoles of analyte. As the effect occurred for all antibodies and haptens tested, it may be sensible to implement the bridge effect in future antibody/hapten-labeling systems in order to achieve the highest sensitivity possible.  相似文献   

9.
A kinetically homogeneous anti-phosphate catalytic antibody preparation was shown to catalyse the hydrolysis of a series of O-aryl N-methyl carbamates containing various substituents in the 4-position of the O-phenyl group. The specific nature of the antibody catalysis was demonstrated by the adherence of these reactions to the Michaelis-Menten equation, the complete inhibition by a hapten analogue, and the failure of the antibody to catalyse the hydrolysis of the 2-nitrophenyl analogue of the 4-nitrophenylcarbamate substrate. Hammett sigma-rho analysis suggests that both the non-catalysed and antibody-catalysed reactions proceed by mechanisms in which development of the aryloxyanion of the leaving group is well advanced in the transition state of the rate-determining step. This is probably the ElcB (elimination-addition) mechanism for the non-catalysed reaction, but for the antibody-catalysed reaction might be either ElcB or B(Ac)2 (addition-elimination), in which the elimination of the aryloxy group from the tetrahedral intermediate has become rate-determining. This result provides evidence of the dominance of recognition of phenolate ion character in the phosphate hapten in the elicitation process, and is discussed in connection with data from the literature that suggest a B(Ac)2 mechanism, with rate-determining formation of the tetrahedral intermediate for the hydrolysis of carbamate substrates catalysed by an antibody elicited by a phosphonamidate hapten in which phenolate anion character is minimized. The present paper contributes to the growing awareness that small differences in the structure of haptens can produce large differences in catalytic characteristics.  相似文献   

10.
Anti-nicotine vaccines may aid smoking cessation via the induction of anti-nicotine antibodies (Ab) which reduce nicotine entering the brain, and hence the associated reward. Ab function depends on both the quantity (titer) and the quality (affinity) of the Ab. Anti-nicotine vaccines tested previously in clinical studies had poor efficacy despite high Ab titer, and this may be due to inadequate function if Ab of low affinity were induced. In this study, we designed and synthesized a series of novel nicotine-like haptens which were all linked to diphtheria toxoid (DT) as carrier, but which differed in the site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. The resulting hapten conjugates were evaluated in a mouse model, using CpG (a TLR9 agonist) and aluminum hydroxide (Al(OH)3) as adjuvants, whereby Ab titers, affinity and function were evaluated using a radiolabeled nicotine challenge model. A series of additional linkers varying in length, rigidity and polarity were used with a single hapten to generate additional DT-conjugates, which were also tested in mice. Conjugates made with different haptens resulted in various titers of anti-nicotine Ab. Several haptens gave similarly high Ab titers, but among these, Ab affinity and hence function varied considerably. Linker also influenced Ab titer, affinity and function. These results demonstrate that immune responses induced in mice by nicotine-conjugate antigens are greatly influenced by hapten design including site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. While both Ab titer and affinity contributed to function, affinity was more sensitive to antigen differences.  相似文献   

11.
Design principles and syntheses of three haptens that were recently reported to generate amide bond cleaving catalytic antibodies are described. The hapten designs sought to induce acidic and/or basic residues in antibody binding sites via charge complementarity, and also to generate a hydrophobic binding pocket for an external phenol nucleophile. The charged yet aromatic nature of these haptens presented some unique synthetic challenges and solutions to which are described below.  相似文献   

12.
13.
V Raso  B D Stollar 《Biochemistry》1975,14(3):584-591
Stable analogs of the crucial Schiff base intermediate of enzymatic and nonenzymatic pyridoxal phosphate catalysis have been used as haptens for induction of specific antibodies. N-(5-phosphopyridoxyl)-3'-amino-L-tyrosine and its conformationally distinct cyclized derivative resemble the Schiff base formed upon mixing tyrosine with pyridoxal phosphate. These compounds were covalently coupled to a protein carrier via the 3'-amino group so as to confer a prescribed orientation, with the coenzyme region farthest removed from the carrier. A third antigen, with the phosphopyridoxyl group alone as the hapten, was prepared by linkage of pyridoxal phosphate directly to free amino groups on the carrier protein. Antibodies elicited for each determinant were purified by means of appropriate affinity columns. Antibody heterogeneity was observed in that different species could be separated from a given serum by sequential elution from the affinity columns with 1 M sodium phosphate buffers of pH 7.6, 5.2, 2.6 and 1.5. In assays of quantitative precipitation, inhibition of precipitation, equilibrium dialysis, and fluorescence quenching, antibodies to the phosphopyridoxyltyrosine haptens showed specificity for the phosphorylated form of the coenzyme and binding activity for both the coenzyme and tyrosine portions of the hapten. Antibodies to the phosphopyridoxyl groups alone did not display a similar reactivity toward the tyrosine portion of the complex haptens. The cyclic and noncyclic conformations of the hapten were serologically distinct, as antibody to each reacted preferentially with the homologous form.  相似文献   

14.
We present a theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody in the presence or absence of monovalent hapten. Bivalent haptens can link together antibodies to form linear chains or rings on cell surfaces. We show how to calculate the amount of any complex of bound bivalent hapten, monovalene fraction of antibody involved in complexes made up of two or more antibodies, i.e., the fraction of antibody that is cross-linked (Xpoly). We treat the case when the antibody on the cell surface, which is specific for the hapten, is homogeneous. For this case we prove a number of general properties about Xpoly: 1) Xpoly approaches zero at both high and low bivalent hapten concentration. 2) Xpoly becomes a maximum when the bivalent hapten concentration equals Amax, where Amax = 1/H + B/2. H is twice the equilibrium constant for the binding of a single hapten site to a single antibody site and B is the monovalent hapten concentration. 3) a plot of Xpoly vs the log of the bivalent hapten concentration is symmetric about the maximum value of Xpoly. We use these and other properties of Xpoly in this paper to clarify the relationship between cross-link formation and histamine release.  相似文献   

15.
We designed and synthesized a series of haptens to elicit catalytic antibodies with phosphatase activity against nerve agents. The design is based on the novel concept of multiple reactive immunization which aims to afford two or more catalytic residues within the antibody's binding cleft. The haptens showed the desired reactivity in vitro and were submitted for immunization.  相似文献   

16.
P Br?let  H M McConnell 《Biochemistry》1977,16(6):1209-1217
Three different phospholipid haptens have been synthesized, in which the haptenic group is the paramagnetic nitroxide (spin-label) group. These lipid haptens differ from one another in the length and composition of the molecular chain linking the 2,2,6,6-tetramethylpiperidinyl-N-oxy moiety to the phosphodiester group of the lipid. These lipid haptens have been incorporated at low molar concentrations (0.01 to 0.5 mol %) in liposomes containing various proportions of cholesterol and dipalmitoylphosphatidylcholine (DPPC). A study has been made of specific antinitroxide IgG (and Fab) binding to these liposomes, and the fixation of complement. From these studies we conclude: (a) For lipid haptens whose possible extension above the bilayer plane is limited (e.g., approximately 10-20 A), antibody binding and complement fixation depend strongly on the hapten structure and host lipid composition, because of steric limitations on the accessibility of lipid haptens to the binding sites in the protein. (b) Complement fixation by specific IgG antibodies directed against the nitroxide group as part of a lipid hapten depends strongly on the lateral mobility of the lipid hapten when its molar concentration in the plane of the membrane is of the order of 0.1 mol % or less. It is likely that this conclusion applies to many lipid haptens, and possibly other membrane components. (c) The inclusion of cholesterol in lipid membranes has at least two distinct effects on complement fixation involving lipid haptens. Through a steric effect on bilayer structure (probably involving lateral molecular ordering) cholesterol in phosphatidylcholine bilayers can enhance hapten exposure to antibody binding sites, enhance antibody binding, and thereby enhance complement fixation. It is likely that cholesterol also affects complement fixation at low hapten concentrations through a modification of membrane fluidity.  相似文献   

17.
Monoclonal antibodies were raised against a mono-p-nitrophenyl phosphonate ester to elicit catalytic antibodies capable of hydrolyzing the analogous p-nitrophenyl ester or carbonate. Potential catalytic antibody producing clones were selected, by use of a competitive inhibition assay, on the basis of their affinity for a "short" transition-state analogue, a truncated hapten which maximizes the relative contribution of the transition-state structural elements to binding. Of 30-40 clones that would have been examined on the basis of hapten binding alone, 7 were selected and 4 of these catalyzed the hydrolysis of the relevant p-nitrophenyl ester. This competitive inhibition technique represents a general approach for selecting potential catalytic antibodies and significantly increases the probability of obtaining efficient catalytic monoclonal antibodies. Further study of the catalytic antibodies revealed significant rate enhancement (kcat/kuncat approximately 10(4)) and substrate specificity for the hydrolysis of the analogous ester and, for three of the antibodies, of the analogous carbonate. The antibodies displayed turnover, an essential feature of enzymes. Evidence that catalysis occurred at the antibody combining sites was provided by the identity of the binding and the catalysis-inhibition specificity patterns.  相似文献   

18.
Kinetic characterization of enzymes and analogous catalysts such as catalytic antibodies requires knowledge of the molarity of functional sites. Various stoichiometric titration methods are available for the determination of active-site concentrations of some enzymes and these are exemplified in the second part of this article. Most of these are not general in that they require the existence of certain types of either intermediate or active-site residues that are susceptible to specific covalent modification. Thus they are not readily applicable to many enzymes and they are rarely available currently for titration of catalytic antibody active sites. In the first part of the article we discuss a general kinetic method for the investigation of active-site availability in preparations of macromolecular catalysts. The method involves steady-state kinetics to provide Vmax and Km and single-turnover first-order kinetics using excess of catalyst over substrate to provide the analogous parameters k(obs)lim and K(m)app. The active-site contents of preparations that contain only active catalyst (Ea) and inert material (Ei) may be calculated as [Ea](T) = Vmax)/k(obs)lim. This is true even if nonproductive binding to E(a) occurs. For polyclonal catalytic antibody preparations, which may contain binding but noncatalytic material (Eb) in addition to Ea and Ei, the significance of Vmax/k(obs)lim is more complex but provides an upper limit to E(a). This can be refined by consideration of the relative values of Km and the equilibrium dissociation constant of EbS. Analysis of the Ea, Eb, Ei system requires the separate determination of Ei. For catalytic antibodies this may be achieved by analytical affinity chromatography using an immobilized hapten or hapten analog and an ELISA procedure to ensure the clean separation of Ei from the Ea + Eb mixture.  相似文献   

19.
沙丁胺醇人工抗原的合成及抗体制备   总被引:5,自引:0,他引:5  
沙丁胺醇是一种β-兴奋剂,常被很多畜禽水产养殖户非法用于动物养殖。为建立沙丁胺醇在食品中残留的快速检测方法,研究了沙丁胺醇免疫原的合成和抗体的制备方法。采用对氨基苯甲酸法合成了沙丁胺醇(SAL)免疫原SAL-cBSA,采用重氮化法合成的克伦特罗(CL)偶合物CL-cOVA作为包被抗原,用紫外光谱法分析了所合成免疫原和包被抗原。用免疫原SAL-cBSA免疫新西兰大白兔获得多克隆抗体,抗体效价达到32000。采用间接ELISA法检测抗体IC50值为8.79ng/ml,SAL的浓度在1ng/ml~100ng/ml区间时,SAL与对抗体的竞争结合力呈直线关系。表明所制备的沙丁胺醇免疫原具有良好的免疫原性,所制备的抗体拥有很高的灵敏度。  相似文献   

20.
A new approach for the elicitation of metal-dependent catalytic antibodies for ester hydrolysis is described. A coordinatively unsaturated mercury complex 1-(Hg), has been utilized as a hapten to elicit antibodies that incorporate mercury(II) as a Lewis acid cofactor. From a panel of monoclonal antibodies generated to 1-(Hg), antibody 38G2 was found to hydrolyze the ester 3 in the presence of HgCl(2) [K(m)app(3)=345 microM; K(m)app(Hg(2+))=87 microM; k(cat)app/k(uncat)=3 x 10(2)]. This is the first example of a biocatalyst that enlists mercuric ion as a cofactor and it is anticipated that this approach will open new avenues for exploitation of metals thought previously beyond the scope of protein catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号