首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A partially purified extract prepared from adapted M. luteus cells contains repair functions for oxygen methylated pyrimidine residues present in alkylated DNA. The removal of O2-MeT is mediated by a DNA glycosylase enzyme whereas disappearance of O4-MeT is effected by a methyltransferase in a manner similar to the in situ repair of O6-MeG. O4-MeT methyltransferase enzyme is unusually heat resistant. Synthesis of these repair proteins, which are distinctly different from the previously known inducible 3-MeA DNA glycosylase and O6-MeG methyltransferase activities, forms a part of the adaptive response.  相似文献   

2.
Escherichia coli expresses two DNA repair methyltransferases (MTases) that repair the mutagenic O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT) DNA lesions; one is the product of the inducible ada gene, and here we confirm that the other is the product of the constitutive ogt gene. We have generated various ogt disruption mutants. Double mutants (ada ogt) do not express any O6MeG/O4MeT DNA MTases, indicating that Ada and Ogt are probably the only two O6MeG/O4MeT DNA MTases in E. coli. ogt mutants were more sensitive to alkylation-induced mutation, and mutants arose linearly with dose, unlike ogt+ cells, which had a threshold dose below which no mutants accumulated; this ogt(+)-dependent threshold was seen in both ada+ and ada strains. ogt mutants were also more sensitive to alkylation-induced killing (in an ada background), and overexpression of the Ogt MTase from a plasmid provided ada, but not ada+, cells with increased resistance to killing by alkylating agents. The induction of the adaptive response was normal in ogt mutants. We infer from these results that the Ogt MTase prevents mutagenesis by low levels of alkylating agents and that, in ada cells, the Ogt MTase also protects cells from killing by alkylating agents. We also found that ada ogt E. coli had a higher rate of spontaneous mutation than wild-type, ada, and ogt cells and that this increased mutation occurred in nondividing cells. We infer that there is an endogenous source of O6MeG or O4MeT DNA damage in E. coli that is prevalent in nondividing cells.  相似文献   

3.
The modified nucleoside 5'-triphosphates O6-MedGTP ad O4-MedTTP have been synthesised and their acceptability as DNA-precursors investigated using DNA polymerases I and alpha in an in vitro assay. O6-MedGMP is only incorporated into newly-synthesized DNA-like material in the presence of templates containing thymine bases. Similarly O4-MedTMP is only incorporated in the presence of templates containing guanine bases. The results confirm the promutagenic nature and base-pairing properties of O6-MeG ad O4-MeT.  相似文献   

4.
Using initiated poly(dG,O6-RdG) and poly(dA,O6-RdG) polynucleotides as templates for DNA polymerase I in vitro the promutagenic potential of O6-MeG and O6-EtG has been confirmed, together with the possibility of minor miscoding pathways for O6-RG. These lead to the incorporation of dAMP and dGMP, which could give rise to some of the limited number of transversions that have been observed arising from the action of alkylating agents. The results are compatible with the current knowledge of oncogenes, explaining the changes in base sequence that have been observed. The competition for the miscoding of O6-RG which leads to the incorporation of dCMP in addition to the expected dTMP is also shown. The relative amounts of these two nucleotides incorporated depend upon the concentrations of the dCTP and dTTP in the assay. The mutagenic efficiency of O6-MeG is constant at approx. 0.4 over a wide range of dTTP and dCTP concentrations and only increases when the dCTP in the assay ceases to saturate the polymerizing enzyme, indicating that the DNA polymerase I plays a role in determining the mutagenic efficiency of a modified base. Although the mutagenic efficiency of both O6-MeG and O6-EtG depends upon the relative concentrations. of dTTP and dCTP in the assay, a reduction in the concentration of dCTP can be more effective at increasing the mutagenic efficiency than a corresponding increase in the concentration of dTTP. These results indicate the importance of cellular dNTP pools in determining the cellular response to agents.  相似文献   

5.
6.
Lips J  Kaina B 《Mutation research》2001,487(1-2):59-66
Methylation at the O(6)-position of guanine (O(6)-MeG) by alkylating agents is efficiently removed by O(6)-methylguanine-DNA methyltransferase (MGMT), preventing from cytotoxic, mutagenic, clastogenic and carcinogenic effects of O(6)-MeG-inducing agents. If O(6)-MeG is not removed from DNA prior to replication, thymine will be incorporated instead of cytosine opposite the O(6)-MeG lesion. This mismatch is recognized and processed by mismatch repair (MMR) proteins which are known to be involved in triggering the cytotoxic and genotoxic response of cells upon methylation. In this work we addressed three open questions. (1) Is MGMT able to repair O(6)-MeG mispaired with thymine (O(6)-MeG/T)? (2) Do MMR proteins interfere with the repair of O(6)-MeG/T by MGMT? (3) Does MGMT show a protective effect if it is expressed after replication of DNA containing O(6)-MeG? Using an in vitro assay we show that oligonucleotides containing O(6)-MeG/T mismatches are as efficient as oligonucleotides containing O(6)-MeG/C in competing for MGMT repair activity, indicating that O(6)-MeG mispaired with thymine is still subject to repair by MGMT. The addition of MMR proteins from nuclear extracts, or of recombinant MutSalpha, to the in vitro repair assay did not affect the repair of O(6)-MeG/T lesions by MGMT. This indicates that the presence of MutSalpha still allows access of MGMT to O(6)-MeG/T lesions. To elucidate the protective effect of MGMT in the first and second replication cycle after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment, MGMT transfected CHO cells were synchronized and MGMT was inactivated by pulse-treatment with O(6)-benzylguanine (O(6)-BG). Thereafter, the recovered cells were treated with MNNG and subjected to clonogenic survival assays. Cells which expressed MGMT in the first and second cell cycle were more resistant than cells which expressed MGMT only in the second (post-treatment) cell cycle. Cells which did not express MGMT in both cell cycles were most sensitive. This indicates that repair of O(6)-MeG can occur both in the first and second cell cycle after alkylation protecting cells from the killing effect of the lesion.  相似文献   

7.
DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).  相似文献   

8.
The winged helix-turn-helix model for the repair of O6-MeG to guanine involving the reaction of O6-MeG with a tyrosine residue of the protein O6-alkylguanine-DNA alkyltransferase (AGT) was examined by studying the reaction mechanism and barrier energies. Molecular geometries of the species and complexes involved in the reaction, i.e. the reactant, intermediate and product complexes as well as transition states, were optimized employing density functional theory in gas phase. It was followed by single point energy calculations using density functional theory along with a higher basis set and second order Mφller-Plesset perturbation theory (MP2) along with two different basis sets in gas phase and aqueous media. For the solvation calculations in aqueous media, the integral equation formalism of the polarizable continuum model (IEF-PCM) was employed. Vibrational frequency analysis was performed for each optimized structure and genuineness of transition states was ensured by visualizing the vibrational modes. It is found that tyrosine can repair O6-MeG to guanine by a two-step reaction. The present results have been compared with those obtained considering the helix-turn-helix model where the repair reaction primarily involves cysteine and occurs in a single-step. It is concluded that the repair through tyrosine envisaged in the winged helix-turn-helix model would be less efficient than that through cysteine envisaged in the helix-turn-helix model.  相似文献   

9.
Five peaks of DNA glycosylase activity showing a preference for MNNG alkylated DNA have been identified from extracts of adapted M. luteus. They are numerically designated as GI to GV in order of their decreasing molecular weights. The first two of these peaks have been highly purified. GI, is a constitutive heat labile protein, 35% stimulated by the presence of 50 mM NaCl, acts exclusively on 3 MeA residues in alkylated DNA, 60-70% inhibited by the presence of 2 mM free 3MeA and has been designated as 3MeA DNA glycosylase enzyme. GII, which is an inducible protein, is heat stable, 28% inhibited by the presence of 50 mM NaCl, removes 3MeA, 3MeG, 7MeA & 7MeG with different efficiency, and has been designated as 3,7 methylpurine DNA glycosylase enzyme. The rate of release of 3 methylpurines is 30 times that of 7MeG. There is no activity of either enzyme on O2-MeC, O2-MeT, O4-MeT or O6-MeG. The apparent molecular weights of GI and GII proteins are 28 Kd and 22 Kd respectively.  相似文献   

10.
11.
The ability of human fibroblast strains to repair the mutagenic DNA adduct O6-methylguanine (O6-MeG) induced by brief exposure to N-methyl-N'-nitroso-N-nitrosoguanidine (MNNG) was investigated. The repair reaction proceeded rapidly during the first hour after alkylation, followed by a slow, continuous phase of repair, and both processes were saturated by low doses of carcinogen. This was similar to what had previously been found in human lymphoblastoid lines. Three fibroblast strains from healthy donors and six strains from patients with ataxia telangiectasia were all proficient in their capacity to repair O6-MeG and had the same sensitivity to the cytotoxicity of MNNG and methyl methanesulphonate as normal cells. Three of these cell strains were derived from individuals whose lymphoblastoid lines were deficient in their ability to repair O6-MeG. These lymphoblastoid lines were also extremely hypersensitive to killing by methylating carcinogens. Because non-transformed cells from the same donors behaved normally with regard to both parameters, we concluded that the repair deficiency accompanied by carcinogen hypersensitivity of the lymphoblastoid lines does not indicate a genetic deficiency in the donor. These findings imply that lymphoblastoid lines may not always be the appropriate cell type for investigating genetic susceptibility to chemical mutagens.  相似文献   

12.
Roles of two types of O6-methylguanine-DNA methyltransferases in DNA repair   总被引:4,自引:0,他引:4  
Escherichia coli possesses 2 types of O6-methylguanine-DNA methyltransferases, one inducible and the other constitutive. These enzymes are coded by the ada and the ogt genes, respectively. Using a synthetic ogt-specific probe, we mapped ogt at 29.4 min, near the 5'-flanking region of the nirR gene, on the E. coli chromosome. To elucidate the roles of the 2 types of methyltransferases in DNA repair, we constructed mutant strains which lack either one or both of the genes. In either the ada+ or the ada- background, the ogt mutation had no effect on cell survival after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. On the other hand, ada- ogt- cells were more prone to mutation as compared to the ada- ogt+ cells exposed to MNNG. The frequency of spontaneous mutation of cells defective in either one or both of the genes was the same, however, the introduction of the ogt+ plasmid into the cells produced a 2-3-fold decrease in the frequency of spontaneous mutation. O6-Methylguanine-DNA methyltransferases appear to eliminate premutagenic DNA lesions not only from cells exposed to alkylating agents but also from those grown in the absence of the agents.  相似文献   

13.
The suicidal inactivation mechanism of DNA repair methyltransferases (MTases) was exploited to measure the relative efficiencies with which the Escherichia coli, human, and Saccharomyces cerevisiae DNA MTases repair O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT), two of the DNA lesions produced by mutagenic and carcinogenic alkylating agents. Using chemically synthesized double-stranded 25-base pair oligodeoxynucleotides containing a single O6MeG or a single O4MeT, the concentration of O6MeG or O4MeT substrate that produced 50% inactivation (IC50) was determined for each of four MTases. The E. coli ogt gene product had a relatively high affinity for the O6MeG substrate (IC50 8.1 nM) but had an even higher affinity for the O4MeT substrate (IC50 3 nM). By contrast, the E. coli Ada MTase displayed a striking preference for O6MeG (IC50 1.25 nM) as compared to O4MeT (IC50 27.5 nM). Both the human and the yeast DNA MTases were efficiently inactivated upon incubation with the O6MeG-containing oligomer (IC50 values of 1.5 and 1.3 nM, respectively). Surprisingly, the human and yeast MTases were also inactivated by the O4MeT-containing oligomer albeit at IC50 values of 29.5 and 44 nM, respectively. This result suggests that O4MeT lesions can be recognized in this substrate by eukaryotic DNA MTases but the exact biochemical mechanism of methyltransferase inactivation remains to be determined.  相似文献   

14.
The E. coli ogt O6-alkylguanine-DNA alkyltransferase has two cysteine residues positioned identically with respect to cysteines in the E. coli ada O6-alkylguanine-DNA alkyltransferase. In order to assess their function, these residues were each substituted by a glycine to generate altered forms of the ogt protein. Mutagenesis of cysteine-139, located within a 'PCHRV' region of homology, eliminated functional activity confirming that this residue is the methyl-accepting cysteine in the active site of the protein. Substitution of cysteine 102 within the sequence 'LRTIPCG' had little effect on the ogt protein activity demonstrating that this cysteine is not directly involved with the transfer of O6-methylguanine adducts.  相似文献   

15.
Rates of individual steps in the removal of alkyl groups from O6-methyl (Me) and -benzyl (Bz) guanine in oligonucleotides by human O6-alkylguanine DNA alkyltransferase (AGT) were estimated using rapid reaction kinetic methods. The overall reaction yields hyperbolic plots of rate versus AGT concentration for O6-MeG but linear plots for the O6-BzG reaction, which is approximately 100-fold faster. The binding of AGT and DNA (double-stranded 30-mer/36-mer complex) appears to be diffusion-limited. The rate of dissociation of the complex is approximately 25-fold slower (approximately 1 s(-1)) for DNA containing O6-MeG or O6-BzG than unmodified DNA. The fluorescent dC-analog 6-methylpyrrolo[2,3-d]pyrimidine-2(3H) one deoxyribonucleoside (pyrrolo dC), which pairs with G, was positioned opposite G, O6-MeG, or O6-BzG and used as a probe of the rate of base flipping. A rapid increase of fluorescence (k approximately 200 s(-1)) was observed with O6-MeG and O6-BzG and AGT but not with a Gly mutation at Arg128, which has been implicated in base flipping with crystal structures. Only weak and slower fluorescence changes were observed with G:pyrrolo dC or T:2-aminopurine pairs. These rate estimates were used in a kinetic model in which AGT binds and scans DNA rapidly, flips O6-alkylG residues, transfers the alkyl group in a chemical step that is rate-limiting in the case of O6-MeG but not O6-BzG, and releases the dealkylated DNA. The results explain the overall patterns of rates of alkyl group removal versus AGT concentration and the effects of the mutations, as well as the greater affinity of AGT for DNA with O6-alkylG lesions.  相似文献   

16.
L K Liem  A Lim    B F Li 《Nucleic acids research》1994,22(9):1613-1619
The behaviour of highly purified bacterial expressed rat O6-methylguanine-DNA methyltransferase (MGMT) towards the repair of CGCm6GAGCTCGCG and CGCe6GAGCTCGCG (km6G/ke6G = 1.45, where k is the second order repair rate constant determined, m6G and e6G are O6-methyl and O6-ethylguanine) is similar to that of E. coli 39kD Ada protein (km6G/ke6G = 1.6). However, the human MGMT is very different (km6G/ke6G = 163). The preferential repair of O6-ethylguanine lesion by the rat MGMT appears not to be related to the lack of the initiator methionine in the expressed protein since similar results were obtained from N-terminal Glutathione-S-transferase (GST) fused protein (GSTMGMT) which retains the methionine. The possible relationship between these findings and the differences observed in the primary amino acid sequence of these proteins is discussed. In addition the preferential repair of O6-ethylguanine substrate by the 39kD Ada protein as compared to the catalytic C-terminus alone (different by 134 times) suggests that the N-terminus plays a crucial role in the repair of O6-ethylguanine. This is in contrast to the minor effects of the GST domain when fused to the N-terminus of mammalian MGMT.  相似文献   

17.
We examined the effect of a single O6-methylguanine (O6-MeG) template residue on catalysis by a model Y family polymerase, Dpo4 from Sulfolobus solfataricus. Mass spectral analysis of Dpo4-catalyzed extension products revealed that the enzyme accurately bypasses O6-MeG, with C being the major product (approximately 70%) and T or A being the minor species (approximately 20% or approximately 10%, respectively), consistent with steady-state kinetic parameters. Transient-state kinetic experiments revealed that kpol, the maximum forward rate constant describing polymerization, for dCTP incorporation opposite O6-MeG was approximately 6-fold slower than observed for unmodified G, and no measurable product was observed for dTTP incorporation in the pre-steady state. The lack of any structural information regarding how O6-MeG paired in a polymerase active site led us to perform x-ray crystallographic studies, which show that "wobble" pairing occurs between C and O6-MeG. A structure containing T opposite O6-MeG was solved, but much of the ribose and pyrimidine base density was disordered, in accordance with a much higher Km,dTTP that drives the difference in efficiency between C and T incorporation. The more stabilized C:O6-MeG pairing reinforces the importance of hydrogen bonding with respect to nucleotide selection within a geometrically tolerant polymerase active site.  相似文献   

18.
Escherichia coli has two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA and are encoded by the ada and ogt genes. The ada gene of E. coli also regulates the adaptive response to alkylation damage. The closely related species Salmonella typhimurium possesses methyltransferase activities but does not exhibit an adaptive response conferring detectable resistance to mutagenic methylating agents. We have previously cloned the ada-like gene of S. typhimurium (adaST) and constructed an adaST-deletion derivative of S. typhimurium TA1535. Unexpectedly, the sensitivity of the resulting strain to the mutagenic action of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was similar to that of the parent strain. In this study, we have cloned and sequenced the ogt-like gene of S. typhimurium (ogtST) and characterized ogtST-deletion derivatives of TA1535. The ogtST mutant was more sensitive than the parent strain to the mutagenicity of MNNG and other simple alkylating agents with longer alkyl groups (ethyl, propyl, and butyl). The adaST-ogtST double mutant had a level of hypersensitivity to these agents similar to that of the ogtST single mutant. The ogtST and the adaST-ogtST mutants also displayed a two to three times higher spontaneous mutation frequency than the parent strain and the adaST mutant. These results indicate that the OgtST protein, but not the AdaST protein, plays a major role in protecting S. typhimurium from the mutagenic action of endogenous as well as exogenous alkylating agents.  相似文献   

19.
Chloroethylnitrosoureas (CENUs) are thought to induce cytotoxic DNA interstrand cross-links via an initial reaction at O6-position of guanine, yielding a rearranged intermediate, O6,N1-ethanoguanine. Repair of these adducts by mammalian and bacterial DNA alkyltransferases blocks the formation of cross-links. Human alkyltransferase can form a covalent complex with DNA containing BCNU-induced cross-link precursors, but the nature of the DNA-protein linkage remains unknown. Using E. coli alkyltransferases expressed by the ada and ogt genes, we now demonstrate that both enzymes can form such complexes with CENU-treated DNA. We attribute this reaction to the O6-alkylguanine repair function, because an N-terminal fragment of the ada protein, which has only alkylphosphotriester repair activity, failed to form a similar complex. This result is consistent with the idea that complex formation requires an alkyltransferase reaction with a guanine adduct, such as O6,N1-ethanoguanine. It tends to exclude the possibility that such reactions simply involve alkylation of the enzyme by reactive DNA adducts such as chloroethylphosphate or chloroethylguanine.  相似文献   

20.
In the present study, we report the development of a sensitive and selective assay based on LC (liquid chromatography)-MS/MS (tandem MS) to simultaneously measure N7-MeG (N7-methylguanine) and N7-EtG (N7-ethylguanine) in DNA hydrolysates. With the use of isotope internal standards (15N5-N7-MeG and 15N5-N7-EtG) and on-line SPE (solid-phase extraction), the detection limit of this method was estimated as 0.42 fmol and 0.17 fmol for N7-MeG and N7-EtG respectively. The high sensitivity achieved here makes this method applicable to small experimental animals. This method was applied to measure N7-alkylguanines in liver DNA from mosquito fish (Gambusia affinis) that were exposed to NDMA (N-nitrosodimethylamine) and NDEA (N-nitrosodiethylamine) alone or their combination over a wide range of concentrations (1-100 mg/l). Results showed that the background level of N7-MeG in liver of control fish was 7.89+/-1.38 mmol/mol of guanine, while N7-EtG was detectable in most of the control fish with a range of 0.05-0.19 mmol/mol of guanine. N7-MeG and N7-EtG were significantly induced by NDMA and NDEA respectively, at a concentration as low as 1 mg/l and increased in a dose-dependent manner. Taken together, this LC-MS/MS assay provides the sensitivity and high throughput required to evaluate the extent of alkylated DNA lesions in small animal models of cancer induced by alkylating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号