首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
酵母是最简单的真核生物,以其为宿主表达异源蛋白具有很大的优越性。近十几年来,各种各样的酵母表达体系陆续发展起来。本文介绍了两种酵母表达系统,并对现有的主要表达体系进行了比较。另外,本文还涉及到酵母在表达抗体或其片段方面的成功应用。  相似文献   

2.
Several different yeast species have been developed into systems for efficient heterologous gene expression. In this paper we review foreign gene expression in the dairy yeastKluyveromyces lactis. This yeast presents several advantageous properties in comparison to other yeast species. These include its impressive secretory capacities, its excellent fermentation characteristics on large scale, its food grade status and the availability of both episomal and integrative expression vectors. Moreover, in contrast to the methylotrophic yeasts that are frequently used for the expression of foreign genes,K. lactis does not require explosion-proof fermentation equipment. Here, we present an overview of the available tools for heterologous gene expression inK. lactis (available promoters, vector systems, etc). Also, the production of prochymosin, human serum albumin and pancreatic phospholipase byK. lactis is discussed in more detail, and used to rate the achievements ofK. lactis with respect to other micro-organisms in which these proteins have been produced.  相似文献   

3.
The fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae have, in addition to being extensively studied themselves, both been utilized for the last quarter century as experimental systems for the isolation of genes from other organisms. Mutations conferring growth defects in either of the two yeast strains have frequently been complemented by expression of cDNA libraries from heterologous species, often human. Many successful experiments have utilized available yeast mutations to allow successful complementation by a human gene, which can thus be deduced to have the same, or an overlapping function as the mutated yeast gene. However complementation in yeast has also been used with success to study two fields, apoptosis and steroid receptor signalling, which, at first glance, seem to be foreign to the yeast life cycle.  相似文献   

4.
Yeasts combine the ease of genetic manipulation and fermentation of a microorganism with the capability to secrete and modify foreign proteins according to a general eukaryotic scheme. Their rapid growth, microbiological safety, and high-density fermentation in simplified medium have a high impact particularly in the large-scale industrial production of foreign proteins, where secretory expression is important for simplifying the downstream protein purification process. However, secretory expression of heterologous proteins in yeast is often subject to several bottlenecks that limit yield. Thus, many studies on yeast secretion systems have focused on the engineering of the fermentation process, vector systems, and host strains. Recently, strain engineering by genetic modification has been the most useful and effective method for overcoming the drawbacks in yeast secretion pathways. Such an approach is now being promoted strongly by current post-genomic technology and system biology tools. However, engineering of the yeast secretion system is complicated by the involvement of many cross-reacting factors. Tight interdependence of each of these factors makes genetic modification difficult. This indicates the necessity of developing a novel systematic modification strategy for genetic engineering of the yeast secretion system. This mini-review focuses on recent strategies and their advantages for systematic engineering of yeast strains for effective protein secretion.  相似文献   

5.
甲醇营养型酵母和裂殖酵母作为外源基因表达的有效系统,正引起人们广泛研究。甲醇营养型酵母具有易诱导调控、适用于高密生长、能高效表达外源蛋白的特点。裂殖酵母有许多与高等真核细胞相似的特点,是研究真核分子生物学和真核基因表达有用的工具。本文综述了这两个酵母表达系统的特点。  相似文献   

6.
A series of yeast expression vectors and cassettes utilizing the CUP1 gene of Saccharomyces cerevisiae have been constructed. The cassettes contain multiple cloning sites for gene fusions and were created by inserting a 27-bp polylinker at the +14 position of the CUP1 gene. The cassettes are portable as restriction fragments and enable copper-regulated expression of foreign proteins in S. cerevisiae. In copper sensitive yeast, multiple copies of the CUP1 cassettes confer copper resistance due to the production of the copper metallothionein. Genes cloned into the CUP1 cassettes, however, usually prevent translation of the metallothionein leading to a loss of resistance. This could be useful for one-step cloning into yeast.  相似文献   

7.
巴斯德毕赤酵母(Pichia pastoris)表达系统是目前应用最广泛的外源基因表达系统之一,提取酵母基因组是研究酵母必需的方法之一.针对常用的几种毕赤酵母基因组DNA的制备方法进行比较,并对玻璃珠法进行改进.改良的玻璃珠法不但具有省时省力、操作简便且结果稳定的优,适合于大量DNA的提取.该方法的革新将对酵母重组子的PCR鉴定检测及表达产品DNA相关检测提供更高效稳定的保证,将成为酵母等类似微生物基因组DNA制备的首选方法.  相似文献   

8.
T Ueda  N Matsuda  T Anai  H Tsukaya  H Uchimiya    A Nakano 《The Plant cell》1996,8(11):2079-2091
The Arabidopsis Ara proteins belong to the Rab/Ypt family of small GTPases, which are implicated in intracellular vesicular traffic. To understand their specific roles in the cell, it is imperative to identify molecules that regulate the GTPase cycle. Such molecules have been found and characterized in animals and yeasts but not in plants. Using a yeast system, we developed a novel method of functional screening to detect interactions between foreign genes and identified this Rab regulator in plants. We found that the expression of the ARA4 gene in yeast ypt mutants causes exaggeration of the mutant phenotype. By introducing an Arabidopsis cDNA library into the ypt1 mutant, we isolated a clone whose coexpression overcame the deleterious effect of ARA4. This gene encodes an Arabidopsis homolog of the Rab GDP dissociation inhibitor (GDI) and was named AtGDI1. The expression of AtGDI1 complemented the yeast sec19-1 (gdi1) mutation. AtGDI1 is expressed almost ubiquitously in Arabidopsis tissues. The method described here indicates the physiological interaction of two plant molecules, Ara4 and GDI, in yeast and should be applicable to other foreign genes.  相似文献   

9.
人胰岛素原基因在酵母中的分泌表达   总被引:1,自引:0,他引:1  
 我们研究了外源基因——合成的人胰岛素原基因在酵母α因子系统中的表达和分泌。用表达载体YTI-15转化酵母63号株可得到每升约2毫克的人胰岛素原分泌产物。  相似文献   

10.
11.
Increasing gene expression in yeast by fusion to ubiquitin   总被引:4,自引:0,他引:4  
Heterologous gene expression in yeast can be increased up to several hundred-fold by expressing a foreign gene as a fusion to the ubiquitin gene. An endogenous yeast endoprotease (Ub-Xase) removes the ubiquitin from the fusion product to produce the authentic protein. The utility of this technique has been demonstrated by expression of three different proteins in yeast as both unfused and ubiquitin-fused forms: 1) the alpha subunit of the mammalian stimulating G-protein of the adenylate cyclase complex (Gs alpha); 2) a soluble fragment of the T cell receptor protein (sCD4); and 3) the protease domain of human urokinase (UKP). The sequence specificity of the Ub-Xase was demonstrated by mutagenesis of the carboxyl-terminal glycine of ubiquitin to an alanine, which inhibited ubiquitin removal in vivo. Processing of the ubiquitin-Gs alpha fusion protein (ub-Gs alpha) in vivo resulted in Gs alpha which could be reconstituted in mammalian membrane preparations and had the same specific activity as the authentic Gs alpha expressed in yeast. The yeast Ub-Xase has also been shown to work in vitro by the processing of a ub-sCD4 fusion protein synthesized in Escherichia coli. This technology should greatly enhance the utility of yeast for heterologous protein production.  相似文献   

12.
Yeasts are attractive hosts for heterologous protein production as they follow the general eukaryotic post-translational modification pattern. The well-known Saccharomyces cerevisiae has been used to produce a large variety of foreign proteins. The proper function of muscle tropomyosin depends on a specific modification at its N-terminus. Although tropomyosin has been produced in different expression systems, only the recombinant protein produced in the yeast Pichia pastoris has native-like functional properties. In this paper we describe the production of functional skeletal muscle tropomyosin in the yeast S. cerevisiae. The recombinant protein was produced in high amounts and production was strongly affected by genetic and environmental factors, including plasmid copy number, promoter strength, and growth media composition.  相似文献   

13.
14.
The promoter sequence (from position −500 to −21) of the yeast actin gene was subcloned into the multiple cloning site of pUC12 to generate a new recombinant plasmid pYAP12. The actin gene promoter can therefore be readily excised from pYAP12 by several restriction enzymes and subsequently placed upstream of the desired protein coding sequence. Results of expression of the hepatitis B surface antigen controlled by the actin gene promoter of pYAP12 in yeast suggest it is a strong functional promoter. To our knowledge, this is the first demonstration of the potential application of the yeast actin gene promoter for expression of foreign proteins in yeast.  相似文献   

15.
 我们提取了酵母(Saccharomyces cerevisiae)的α因子基因,并组建了一系列含有α因子引导肽编码序列的质粒。这些质粒可用于外源基因在酵母中表达的研究。  相似文献   

16.
酿酒酵母是基因工程产品研究和生产的一个重要表达系统,表达载体和宿主细胞是构成表达系统的两大要素,虽然外源基因表达的方式、强度主要由表达载体控制.但宿主细胞的选择对最终获取产品的质量和数量也具有十分关键的作用。酿酒酵母基因工程宿主菌除要求具有高的DNA转化效率、细胞生长密度和稳定性、低的内源蛋白水解酶活性外,还必须具备与表达载体相对应的营养缺陷筛选标记,用传统随机诱变方法得到的营养缺陷变异株,因含有本底和隐性突变,在细胞生长密度和稳定性方面往往不能满足基因工程产品研究和生产的要求,甚至不能有效地表达外源基因。本文报道用重组技术,通过非随机方法构建了酿酒酵母基因工程宿主茁。研究表明用该方法得到的宿主菌在细胞生长密度、稳定性和表达外源基因方面优于用传统随机诱变方法得到的宿主菌。  相似文献   

17.
作为研究甲醇代谢、过氧化物酶体稳态和硝酸盐吸收的模式生物,多形汉逊酵母近年来在基础研究领域日益受到重视。在工程应用领域,利用多形汉逊酵母表达真核外源基因有特殊的优势。譬如容易得到高拷贝,在含油酸的培养条件下能够表达膜蛋白等。已有多种外源蛋白在多形汉逊酵母系统中得到表达。本文综述了多形汉逊酵母的基本生物学性质、基础研究领域概况及其在外源基因表达方面的特点和进展。  相似文献   

18.
Using the modified yeast expression vectors that contained phosphoglycerate kinase or chelatin promoter with the adenine (A) base at –3 position from the ATG coding sequences and the leu-2 gene, recombinant human inter-leukin-6 ( rhIL-6) was produced as a b-galactosidase ( lacZ) fusion protein in Saccharomyces cerevisiae. Expression level of the IL-6-lacZ was 12 times higher than that from the unmodified wild type plasmids and IL-6 activity was 9–9.8 x 10 5 unit/mg yeast total protein. Thus these modified yeast vectors are useful for high expression of foreign genes in yeast  相似文献   

19.
消化道途径转基因过程方便、快捷、易适应,可为基因治疗提供全新的模式。为了研究人 生长激素(bGH)基因的经消化道途径转基因过程,实验首先应用ECHO克隆系统。在供载体 pUni-hGH和宿主载体pcDNA4/TO-E的基础上,构建出hGH的哺乳动物表达载体pcDNA4-hGH;然 后结合酿酒酵母表达载体pESC-URA,构建出hGH的酵母-哺乳动物穿梭栽体pESC-CMV-hGH,测 序鉴定后转化酿酒酵母。用阳性重组酵母对小鼠进行灌胃免疫实验,间接ELISA方法在实验组 小鼠的血清中检测到抗hGH抗体的存在。结果证实hGH基因可通过消化道途径转进小鼠体细 胞并进行表达,初步证明了hGH的消化道基因治疗的可行性。  相似文献   

20.
A system of expression for the foreign actin gene in yeast cells Pichia pastoris has been developed. As a target protein, the Drosophila cytoplasmic actin 5C, which has 90% homology to the β-actin of higher eukaryotes, was used. In the present work, in order to develop conditions for biosynthesis of the target protein in yeast cells and a purification procedure for the recombinant protein, a GFP-actin fusion protein containing green fluorescent protein (GFP) as a fusion tag was expressed and purified. The size and survival of P. pastoris cells producing recombinant protein were characterized and shown to depend on the accumulation of recombinant actin. The purified fusion protein was used to obtain a polyclonal antibody necessary for testing for recombinant actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号