首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Myelin basic protein (MBP) is a major protein of myelin‐proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12‐mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti‐MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (K d = 0.51–0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10−1 to 2.3 × 10−4 M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (K d, M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192‐fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins.  相似文献   

2.
3.
4.
Myelin basic protein (MBP) is predominantly found in the membranes of the myelin sheath of the central nervous system and is involved in important protein-protein and protein-lipid interactions in vivo and in vitro. Furthermore, divalent transition metal ions, especially Zn2+ and Cu2+, seem to directly affect the MBP-mediated formation and stabilization of the myelin sheath of the central nervous system. MBP belongs to the realm of intrinsically disordered proteins, and only fragmentary information is available regarding its partial structure(s) or supramolecular arrangements. Here, using standard continuous wave and modern pulse electron paramagnetic resonance methods, as well as dynamic light scattering, we demonstrate the uptake and specific coordination of two Cu2+ atoms or one Zn2+ atom per MBP molecule in solution. In the presence of phosphates, further addition of divalent metal ions above a characteristic threshold of four Cu2+ atoms or two Zn2+ atoms per MBP molecule leads to the formation of large MBP aggregates within the protein solution. In vivo, MBP-MBP interactions may thus be mediated by divalent cations.  相似文献   

5.
Mannan-binding protein (MBP) is a Ca(2+)-dependent mammalian lectin that plays an important role in innate immunity. In this study, we found that ligand-bound MBP stimulates polymorphonuclear leukocytes (PMN) to induce cell aggregation and superoxide production. The biological response of PMN to ligand-bound MBP was dose- and time-dependent. The PMN aggregation and superoxide production induced by ligand-bound MBP was blocked completely by pertussis toxin, and partially blocked by a platelet activation factor receptor antagonist, TCV-309. These findings suggest that the ligand-bound MBP stimulates PMN through a putative MBP receptor(s) on PMN.  相似文献   

6.
The human eosinophil granule contains a number of cationic proteins that have been identified and purified to homogeneity, including the major basic protein (MBP), the eosinophil cationic protein (ECP), and the eosinophil-derived neurotoxin (EDN). Because of confusion in the literature regarding the distinctiveness of MBP and ECP, we investigated the immunochemical and physicochemical properties of these purified proteins by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), by specific double antibody radioimmunoassays (RIA) for MBP and ECP, and by fractionation of acid-solubilized eosinophil granules on Sephadex G-50 columns. Analysis of a mixture of the three purified proteins by SDS-PAGE showed that they migrated as three distinct bands with differing m.w. Comparison by specific RIA for MBP and ECP did not demonstrate any appreciable immunochemical cross-reactivities among the three proteins. Sephadex G-50 column fractions of acid-solubilized eosinophil granules were analyzed by RIA and by SDS-PAGE analysis of individual column fractions. MBP, ECP, and EDN eluted at different volumes from Sephadex G-50 columns as determined by RIA and SDS-PAGE. Soluble extracts of eosinophil granules from patients with the hypereosinophilic syndrome contained between six and 64 times more MBP than ECP on a weight basis. These observations demonstrate that MBP, ECP, and EDN are distinctive cationic proteins of the human eosinophil granule and that eosinophil granules from patients with eosinophilia contain considerably greater quantities of MBP than ECP.  相似文献   

7.
The eosinophil granule proteins, major basic protein (MBP) and eosinophil cationic protein (ECP), activate mast cells during inflammation; however the mechanism responsible for this activity is poorly understood. We found that some theoretical tryptase-digested fragments of MBP and ECP induced degranulation of human cord blood-derived mast cells (HCMCs). The spectrum of activities of these peptides in HCMCs coincided with intracellular Ca2+ mobilization activities in Mas-related G-protein coupled receptor family member X2 (MRGPRX2)-expressing HEK293 cells. Two peptides corresponding to MBP residues 99–110 (MBP (99–110)) and ECP residues 29–45 (ECP (29–45)), respectively, induced degranulation of HCMCs and intracellular Ca2+ mobilization in MRGPRX2-expressing HEK293 cells in a concentration-dependent manner. Stimulation with MBP (99–110) or ECP (29–45) induced the production of prostaglandin D2 by HCMCs. The activities of MBP (99–110) and ECP (29–45) in both HCMCs and MRGPRX2-expressing HEK293 cells were inhibited by MRGPRX2-specific antagonists. In conclusion, these results indicated that MBP and ECP fragments activate HCMCs, and it may occur via MRGPRX2. Our findings suggest that tryptase-digested fragments of eosinophil cationic proteins acting via the MRGPRX2 pathway may further our understanding of mast cell/eosinophil communication.  相似文献   

8.
We studied the effects of daily intake of milk basic protein (MBP) on radial bone mineral density (BMD) in healthy adult women. Thirty-three healthy women were randomly assigned to a 6-month trial with either placebo or MBP (40 mg per day). The radial BMD of each volunteer was measured at the beginning of and at six months after the trial. The mean BMD value at the 6th month in the MBP group increased significantly at both 1/6 and 1/10 portion from the distal end of the radius, whereas that in the control group did not. The BMD gain of each volunteer in the MBP group was significantly higher than that in the placebo group. Thus a daily MBP supplementation of 40 mg in healthy adult women can significantly increase radial BMD.  相似文献   

9.
Multicatalytic proteinase complex (MPC) was isolated from bovine brain and the susceptibility of myelin basic protein (MBP) and P2 protein of bovine central and peripheral nervous system was examined. SDS-polyacrylamide electrophoretic analysis of purified MPC revealed protein bands of molecular weight ranging from 22–35 kDa. The enzyme is activated by SDS at a concentration less than 0.01%. Upon incubation with MPC, purified MBP and P2 proteins were degraded into smaller fragments. There was a 57% and 100% loss of MBP at 2 and 6 hours of incubation. The P2 protein which is not susceptible to any endogenous non-lysosomal enzyme thus far studied was digested into small peptide fragments only in the presence of SDS (0.01%) and not in its absence. These results indicate that MPC which is active at physiological conditions may have a role in the turnover of myelin proteins and in demyelinating diseases.  相似文献   

10.
Myelin basic protein (MBP), particularly the classic 18.5-kDa isoform, is a major structural protein of the myelin sheath of the central nervous system. It is an intrinsically disordered, peripheral membrane protein that shows structural polymorphism in combination with several overlapping interaction sites. Here, double electron-electron resonance (DEER) spectroscopy, in combination with a simplified, semi-quantitative analysis based on Monte Carlo simulations, is used to determine the distance distribution of murine 18.5-kDa MBP, unmodified charge component-C1, on large unilamellar vesicles of a lipid composition mimicking the cytoplasmic leaflet of myelin. Three singly spin-labeled MBP variants and a mixture of singly-labeled MBP variants are used. The MBPs, each bearing only one spin label, exhibit average intermolecular distances that are significantly shorter than the distances expected when assuming a random distribution at the employed lipid-to-protein ratios, indicating self-assembly on the membrane. The distribution of elliptical pervaded areas (hard ellipses) on a two-dimensional surface can serve as a model of the nonspecific self-assembly process. The corresponding pair correlation functions g(r) are determined from Monte Carlo simulations with variation of various parameters such as the ellipses' aspect ratios. Comparing the g(r) values with the DEER-derived distance distributions, the pervaded volume is best characterized by a nearly elliptical projection onto the membrane, with an aspect ratio of approximately 1.5, and with the longer semi-axis of approximately 1.4nm. The approach of using local information from DEER with low-resolution models derived from Monte Carlo simulations can be applied to study the lateral self-assembly properties of other protein complexes on membranes.  相似文献   

11.
An immunoelectron microscopic technique using protein A-gold as a specific marker was used for precise intracellular localization of eosinophil granule proteins. Eosinophils from healthy individuals were isolated in metrizamide gradients. Eosinophil cationic protein (ECP) and eosinophil peroxidase (EPO) were clearly located in the matrix of the large crystalloid-containing granules. In addition, ECP was probably present in the small granules of eosinophils. Major basic protein (MBP) was present in the crystalloid structure of specific granules. This method can be applied in studies of eosinophil degranulation to trace the release of biological effector molecules.  相似文献   

12.
A restriction endonuclease fragment derived from a cloned portion of human genomic DNA corresponding to the myelin basic protein gene has been used to map the position of this gene by in situ hybridization to human metaphase chromosomes. Ten percent of the radioactively labeled sites observed were on chromosome 18. Eighty-four percent of the grains on chromosome 18 were located within the region corresponding to 18q22----qter. This represents a greater than 10-fold increase in labeling at this position over the background grain distribution found along all of the other chromosomes.  相似文献   

13.
14.
The classic 18.5 kDa isoform of murine myelin basic protein (mMBP) has been shown to bind calmodulin (CaM) strongly and specifically in vitro. Here, we have used site-directed spin labelling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy to map more precisely the sites of interaction of recombinant mMBP (rmMBP) with CaM. On the basis of these and previous experimental data, and the predictions of CaM-binding motifs using the Calmodulin Target Database (), three main segments of MBP were suggested for the interaction. The first site is located at the C-terminus; the second one lies in the central portion of the protein and forms an amphipathic alpha-helix in reconstituted myelin-mimetic systems; the third is quite close to the N-terminus. The murine Golli-MBP isoform J37 has also been shown to bind CaM in vitro, and an interaction site was predicted in the N-terminal Golli-specific portion of the protein. From these four segments, we selected peptide fragments of 12-14 residues in length, chosen on the bases of their amphipathicity and CaM-target characteristics. We modelled each of these peptides as alpha-helices, and performed docking simulations to investigate their interactions with the CaM peptide-binding tunnel. Different yet almost equally favourable CaM-binding modes were found for each of them. The experimental SDSL/EPR and theoretical modelling results were in good agreement, and supported the conjecture that there are several plausible CaM-binding sites in MBP, that could be induced into an alpha-helical conformation by their interaction with CaM and account for strong immobilisation of spin-labeled residues in all three segments. Phosphorylation and deimination were also emulated and simulated for known sites of MBP post-translational modification. The results obtained confirmed the appropriate utilisation of simple residue substitutions to mimic the natural modifications, and demonstrated molecular mechanisms by which MBP-CaM interactions could be modulated in vivo.  相似文献   

15.
Eosinophil granule major basic protein (MBP) is a relatively low molecular weight cationic (pI greater than 10) protein present in the crystalloid core of the eosinophil granule. Amino acid sequence analysis of this protein was undertaken as part of an analysis of the structural basis of the potent cytotoxic activities of MBP on parasites and mammalian cells. Many conventional sequencing strategies were unworkable because of the unusual amino acid composition of MBP and its insolubility in solutions buffered at neutral pH. Less conventional chemical reactions, including cyanogen bromide-induced cleavage at tryptophan and acid-induced cleavage at aspartic acid, were used successfully to obtain peptides which allowed definition of the amino acid sequence of MBP. Characterization of MBP by reverse-phase high pressure liquid chromatography and two-dimensional gel analysis showed no microheterogeneity that might be attributed to post-translational modifications. Comparison of the MBP sequence with a protein sequence data base showed that MBP has no significant sequence homology with other characterized proteins. The basicity (pI 10.9) and hydrophobicity predicted from the MBP sequence are likely responsible for the observed affinity of this cytotoxic molecule for cell surfaces and some serum proteins.  相似文献   

16.
Human eosinophils contain several distinctive proteins including eosinophil granule MBP and the membrane-associated CLC protein (lysophospholipase). Human basophils also contain these proteins, indicating biochemical similarities between eosinophils and basophils. To determine whether MBP or CLC protein is present in connective tissue mast cells, we studied human lung and cutaneous mast cells by immunofluorescence by utilizing specific antibodies to CLC and MBP. Cytocentrifuge slides of enriched lung mast cells and mast cells in sections of formalin-fixed, paraffin-embedded cutaneous tissue from urticaria pigmentosa lesions were stained for CLC and MBP. Neither pulmonary nor cutaneous mast cells stained for CLC protein or MBP. In contrast, lung and cutaneous eosinophils in the same preparations showed bright staining for both proteins. The failure to find CLC protein and MBP in mast cells provides additional evidence of dissimilarity between mast cells and basophils, and an immunochemical means to distinguish between them.  相似文献   

17.
18.
A cystein protease inhibitor was identified in the basic fraction of bovine milk. We have reported in our previous study that the milk basic protein (MBP) fraction suppressed osteoclast-mediated bone resorption in vitro. Since osteoclasts secreted cystein protease to digest collagen in the bone matrix, we identified the cystein protease inhibitor in MBP. A 12-kDa inhibitor was purified from MBP by papain affinity gel chromatography and subsequent Hi-Load Superdex 75 gel filtration chromatography. The N-terminal sequence of the 18 amino acid residues of the inhibitor corresponded to bovine cystatin C. The 12-kDa cystein protease inhibitor in MBP therefore seemed to be cystatin C. Purified cystatin suppressed bone resorption with the use of isolated osteoclasts in vitro. Cystatin in MBP is suggested as one of the factors inhibiting bone resorption.  相似文献   

19.
Three antisera to myelin basic protein—a rabbit antiserum pool against rat myelin, a rabbit antiserum pool against rat myelin basic protein (MBP), and a monkey antiserum against bovine MBP—were found to contain detectable levels of antibodies that would bind radiolabeled S49 (GSLPQKAQRPQDENG). Strongly encephalitogenic in Lewis rat, S49 is a synthetic peptide representing residues 69–84 of bovine MBP with a deletion of glycine-76 and histidine-77 to make it analogous to rat and guinea pig MBPs. The rabbit antimyelin antiserum and the monkey anti-MBP antiserum contained antibodies directed against a non-sequential determinant that required asparagine 84, the glycine-histidine deletion, and residues 69–71 for maximal activity. S49-reactive antibodies from the rabbit anti-MBP antiserum were directed solely against a sequential determinant comprising residues 69–71. S49-reactive antibodies from all three antisera reacted in liquid phase with purified intact rat, guinea pig, and bovine MBP showing that the determinant is exposed for B cell recognition even in bovine MBP and can serve both as immunogen and reactant.This work supported at Duke University Medical Center by Research Grant NS-10237 from the National Institutes of Health of the U.S. Public Health Service and the Medical Scientist Training Program Grant #5-T32-OMO-7171-08; at St. Luke's Hospital Center by NS-15322 from the National Institutes of Health of the U.S. Public Health Service; and at Northwestern University by Research Grant NS-06262 from the National Institutes of Health of the U.S. Public Health Service.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号