首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Lee JS  Ward WO  Liu J  Ren H  Vallanat B  Delker D  Corton JC 《PloS one》2011,6(9):e24381

Background

Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species.

Results

Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs was observed at early (GD19, PND7) and to a lesser extent, later life stages (18 and 24 months). A number of female-specific XMETs exhibited a spike in expression centered at PND7.

Conclusions

The analysis revealed dramatic differences in the expression of the XMETs, especially in the fetus and neonate that are partially dependent on gender-dependent factors. XMET expression can be used to predict life stage-specific responses to environmental chemicals and drugs.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (trkB) influence neuronal survival, differentiation, synaptogenesis, and maintenance. Using in situ hybridization we examined the spatial and temporal expression of mRNAs encoding these proteins during diverse stages of life in the human hippocampus and inferior temporal cortex. We examined six postnatal time points: neonatal (1-3 months), infant (4-12 months), adolescent (14-18 years), young adult (20-24 years), adult (34-43 years), and aged (68-86 years). Within the hippocampus, levels of BDNF mRNA did not change significantly with age. However, levels of both the full-length form of trkB (trkB TK+) mRNA and the truncated form of trkB (trkB TK-) decreased over the life span (p < 0.05). In the temporal cortex, BDNF and trkB TK+ mRNA levels were highest in neonates and decreased with age (r = -0.4 and r = -0.7, respectively, both p < 0.05). In contrast, TrkB TK- mRNA levels remained constant across the life span in the temporal cortex. The peak in both BDNF and trkB TK+ mRNA expression in the neonate temporal cortex differs from that previously described for the frontal cortex where both mRNAs peak in expression during young adulthood. The increase in BDNF and trkB TK+ mRNA in the temporal cortex of the neonate suggests that neurotrophin signaling is important in the early development of the temporal cortex. In addition, since BDNF and both forms of its high affinity receptor are expressed throughout the development, maturation, and aging of the human hippocampus and surrounding neocortex they are likely to play roles not only in early growth but also in maintenance of neurons throughout life.  相似文献   

5.
Transgenic mice provide a means to study human gene expression in vivo throughout the aging process. A DNA sequence containing 668 bp of the 5' regulatory region of the human transferrin gene was fused to the bacterial reporter gene chloramphenicol acetyl transferase (TF-CAT) and introduced into the mouse genome. Expression of the human chimeric transferrin gene was similar to the tissue patterns of mouse and human transferrin. In aging transgenic mice, expression of the human chimeric transferrin gene was found to diminish 40% in livers between 18 and 26 months of age. Transferrin levels and serum iron levels in aging humans also diminish, as observed from measurements of total iron binding capacity and percent iron saturation in sera from 701 individuals ranging from 0 to 99 years of age. In contrast, in transgenic mice and nontransgenic mice, the mouse endogenous plasma transferrin and endogenous Tf mRNA increase significantly during aging. Neither the decrease of human TF-CAT nor the increase of mouse transferrin during aging appears to be part of a typical inflammatory reaction. Although the 5' regions of the human transferrin and mouse transferrin genes are homologous, sequence diversities exist which could account for the different responses to inflammation and aging observed.  相似文献   

6.
The expression of the KGF receptor (KGFR) and its stromal ligands, KGF and FGF-10, was compared during mouse mammary gland development. KGFR expression in mammary parenchyma is maximal in mature virgin mice, declines during pregnancy and lactation, but rises after weaning. The rise in KGFR mRNA in the virgin animal corresponds to parenchymal growth. The fall in KGFR expression in pregnancy is driven by hormone-induced alveolar differentiation since the level of KGFR mRNA is 5-fold higher in isolated ductal cells compared to alveolar cells. KGF and FGF-10 expression patterns differ during ductal development. FGF-10 is also expressed at about a 15-fold higher molar level than KGF. During pregnancy and lactation, expression of KGF and FGF-10 decreases in intact fat pads but is unchanged in parenchyma-free fat pads. Thus, the decrease in KGF and FGF-10 expression observed in intact glands during pregnancy and lactation is not a direct consequence of the changing hormonal milieu but more likely reflects an increase in the ratio of epithelium to stroma. Differences in the level and pattern of expression of mRNA for KGF, FGF-10, and the KGFR during postnatal development of the mouse mammary gland are a result of morphological development, changes in the ratio of stroma to epithelium, and hormonal regulation of cell differentiation. These changes suggest that the biological roles that these growth factors play are regulated by fluctuations in both growth factor and growth factor receptor expression and that KGF and FGF-10 may have different regulatory functions.  相似文献   

7.
Upon physiological stress, families of stress response genes are activated as natural defense mechanisms. Here, we show that induction of specific inflammatory genes is significantly dysregulated and altered in the heart of aged (24--26-month-old) versus young (4-month-old) mice experimentally challenged with a bacterial endotoxin, lipopolysaccharide (LPS, 1.5 mg/kg of body mass). Whereas the LPS-mediated induction of cardiac mRNA for tumor necrosis factor alpha or inducible nitric-oxide synthase showed no age-associated differences, the induction of interleukin-1 beta (IL-1 beta) and intracellular adhesion molecule-1 was modestly extended with aging, and the induction of IL-6 was significantly prolonged with aging. This age-associated phenomenon occurred gradually from 4 to 17 months of age and became more evident after 23 months of age. The age-associated augmentation of the cardiac IL-6 induction was also dramatic at the protein level. Immunohistochemically, the LPS-induced cardiac IL-6 was localized mainly in the microvascular walls. Aged but not young mice showed a high mortality rate during these experiments. These results demonstrate that endotoxin-mediated induction of specific inflammatory genes in cardiovascular tissues is altered with aging, which may be causally related to the increased susceptibility of aged animals to endotoxic stress.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The study of aging is critical for a better understanding of many age-related diseases. The free radical theory of aging, one of the prominent aging hypotheses, holds that during aging, increasing reactive oxygen species in mitochondria causes mutations in the mitochondrial DNA and damages mitochondrial components, resulting in senescence. Understanding a mitochondrial gene expression profile and its relationship to mitochondrial function becomes an important step in understanding aging. The objective of the present study was to determine mRNA expression of mitochondrial-encoded genes in brain slices from C57BL6 mice at four ages (2, 12, 18, and 24 months) and to determine how these altered mitochondrial genes influence age-related changes, including oxidative damage and cytochrome c in apoptosis. Using northern blot analysis, in situ hybridization, and immunofluorescence analyses, we analyzed changes in the expression of mitochondrial RNA encoding the mitochondrial genes, oxidative damage marker, 8-hydroxyguanosine (8-OHG), and cytochrome c in brain slices from the cortex of C57BL6 mice at each of the four ages. Our northern blot analysis revealed an increased expression of mitochondrial-encoded genes in complexes I, III, IV, and V of the respiratory chain in 12- and 18-month-old C57BL6 mice compared to 2-month-old mice, suggesting a compensatory mechanism that allows the production of proteins involved in the electron transport chain. In contrast to the up-regulation of mitochondrial genes in 12- and 18-month-old C57BL6 mice, mRNA expression in 24-month-old C57BL6 mice was decreased, suggesting that compensation maintained by the up-regulated genes cannot be sustained and that the down-regulation of expression results in the later stage of aging. Our in situ hybridization analyses of mitochondrial genes from the hippocampus and the cortex revealed that mitochondrial genes were over-expressed, suggesting that these brain areas are critical for mitochondrial functions. Our immunofluorescence analysis of 8-OHG and cytochrome c revealed increased 8-OHG and cytochrome c in 12-month-old C57BL6 mice, suggesting that age-related mitochondrial oxidative damage and apoptosis are associated with mitochondrial dysfunction. Our double-labeling analysis of in situ hybridization of ATPase 6 and our immunofluorescence analysis of 8-OHG suggest that specific neuronal populations undergo oxidative damage. Further, double-labeling analysis of in situ hybridization of ATPase 6 and immunofluorescence analysis of cytochrome c suggest cytochrome c release is related to mitochondrial dysfunction in the aging C57BL6 mouse brain. This study also suggests that these mitochondrial gene expression changes may relate to the role of mitochondrial dysfunction, oxidative damage, and cytochrome c in aging and in age-related diseases such as Alzheimer's disease and Parkinson's disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号