首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RabGTPase is a member of the Ras superfamily of small GTPases, which share a GTP-binding pocket containing highly conserved motifs that promote GTP hydrolysis. In Arabidopsis, the RabA group, which corresponds to the Rab_(11) group in animals, functions in the recycling of endosomes that control docking and fusion during vesicle transport. However, their molecular mechanisms remain unknown. In this study, we determined the crystal structures of the GDP-bound inactive form and both GppNHp-and GTP-bound active forms of RabA1a, at resolutions of 2.8, 2.6, and 2.6 A?,respectively. A bound sulfate ion in the active site of the GDP-bound structure stabilized Switch Ⅱ by bridging the interaction between a magnesium ion and Arg74.Comparisons of the two states of RabA1a with Rab_(11) proteins revealed clear differences in the Switch Ⅰ and Ⅱ loops. These results suggested that conformational change of the Switch regions of RabA1a, derived by GTP or GDP binding, could maintain subcellular membrane traffic through the specific interaction of effector molecules.  相似文献   

2.
Rab proteins belong to the family of monomeric GTPases which are involved in the cellular membrane trafficking. Rab21 protein exists in interchangeable GTP- and GDP-bound states. Rabs switch between two active and inactive conformations like other GTPases. The inactive form of Rab is bound to GDP while its active form is bounded with the GTP. Interexchange between active and inactive form is mediated by the GDP/GTP exchange factor (GEF) which catalyses the conversion from GDP-bound to GTP-bound form, thereby activating the Rab. While the GTP hydrolysis of Rabs is regulated by a GTPase-activating protein (GAP) which causes Rab inactivation. Here, we report the structural flexibility of the Rab21-GTP and Rab21-GDP complexes by docking and molecular dynamics (MD) simulations. Structural analysis of exchange mechanisms of the co-factors complexed with Rab21 reveals that Cys29, Thr33, His48, Gln78 and Lys133 are essentially important in the activation of proteins. Furthermore, a significant change in the orientation of the interacting co-factors, with slight variation in the free energy of binding was observed. Complexation of GEF with Rab21-GTP and Rab21-GDP reveal a flipping of the switchable residues. Finally, 50 ns MD simulations confirm that the GTP-bound Rab21 complex is thermodynamically more favoured than the corresponding GDP-bound complex. This study provides a detailed understanding of the structural elements involved in the conformational changes of Rab21.  相似文献   

3.
Structural basis of activation and GTP hydrolysis in Rab proteins   总被引:1,自引:0,他引:1  
BACKGROUND: Rab proteins comprise a large family of GTPases that regulate vesicle trafficking. Despite conservation of critical residues involved in nucleotide binding and hydrolysis, Rab proteins exhibit low sequence identity with other GTPases, and the structural basis for Rab function remains poorly characterized. RESULTS: The 2. 0 A crystal structure of GppNHp-bound Rab3A reveals the structural determinants that stabilize the active conformation and regulate GTPase activity. The active conformation is stabilized by extensive hydrophobic contacts between the switch I and switch II regions. Serine residues in the phosphate-binding loop (P loop) and switch I region mediate unexpected interactions with the gamma phosphate of GTP that have not been observed in previous GTPase structures. Residues implicated in the interaction with effectors and regulatory factors map to a common face of the protein. The electrostatic potential at the surface of Rab3A indicates a non-uniform distribution of charged and nonpolar residues. CONCLUSIONS: The major structural determinants of the active conformation involve residues that are conserved throughout the Rab family, indicating a common mode of activation. Novel interactions with the gamma phosphate impose stereochemical constraints on the mechanism of GTP hydrolysis and provide a structural explanation for the large variation of GTPase activity within the Rab family. An asymmetric distribution of charged and nonpolar residues suggests a plausible orientation with respect to vesicle membranes, positioning predominantly hydrophobic surfaces for interaction with membrane-associated effectors and regulatory factors. Thus, the structure of Rab3A establishes a framework for understanding the molecular mechanisms underlying the function of Rab GTPases.  相似文献   

4.
Members of the Rab family of small GTPases play important roles in membrane trafficking along the exocytic and endocytic pathways. The Rab11 subfamily consists of two highly conserved members, Rab11a and Rab11b. Rab11a has been localized both to the pericentriolar recycling endosome and to the trans-Golgi network and functions in recycling of transferrin. However, the localization and function of Rab11b are completely unknown. In this study green fluorescent protein (GFP)-tagged Rab11b was used to determine its subcellular localization. GFP-Rab11b colocalized with internalized transferrin, and using different mutants of Rab11b, the role of this protein in transferrin uptake and recycling was examined. Two of these mutants, Rab11b-Q/L (constitutively active) and Rab11b-S/N (constitutively inactive), strongly inhibited the recycling of transferrin. Interestingly, both of them had no effect on transferrin uptake. In contrast, the C-terminally altered mutant Rab11b-DeltaC, which cannot be prenylated and therefore cannot interact with membranes, did not interfere with wild-type Rab11b function. From these data we concluded that functional Rab11b is essential for the transport of internalized transferrin from the recycling compartment to the plasma membrane.  相似文献   

5.
Background information. Rab11 and Rab14 are two related Rab GTPases that are believed to function in endosomal recycling and Golgi/endosome transport processes. We, and others, have identified a group of proteins that interact with Rab11 and function as Rab11 effectors, known as the Rab11‐FIPs (family interacting proteins). This protein family has been sub‐classified into two groups—class I FIPs [FIP2, RCP (Rab coupling protein) and Rip11 (Rab11‐interacting protein)] and class II FIPs (FIP3 and FIP4). Results. In the present study we identify the class I FIPs as dual Rab‐binding proteins by demonstrating that they also interact with Rab14 in a GTP‐dependent manner. We show that these interactions are specific for the class I FIPs and that they occur via their C‐terminal regions, which encompass the previously described RBD (Rab11‐binding domain). Furthermore, we show that Rab14 significantly co‐localizes with the TfnR (transferrin receptor) and that Rab14 Q70L co‐localizes with Rab11a and with the class I FIPs on the ERC (endosomal recycling compartment) during interphase. Additionally, we show that during cytokinesis Rab14 localizes to the cleavage furrow/midbody. Conclusions. The data presented in the present study, which identifies the class I FIPs as the first putative effector proteins for the Rab14 GTPase, indicates greater complexity in the Rab‐binding specificity of the class I FIP proteins.  相似文献   

6.
Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.  相似文献   

7.
The Rab11 family of small GTPases is composed of three members, Rab11a, Rab11b, and Rab25. While recent work on Rab11a and Rab25 has yielded some insights into their function, Rab11b has received little attention. Therefore, we sought to examine the distribution of endogenous Rab11b in epithelial cells. In rabbit gastric parietal cells, unlike Rab11a, Rab11b did not colocalize or coisolate with H(+)/K(+)-ATPase. In MDCK cells, endogenous Rab11b localized to an apical pericentrisomal region distinct from Rab11a. The microtubule agents nocodazole and taxol dramatically alter Rab11a's localization in the cell, while effects on Rab11b's distribution were less apparent. These results indicate that in contrast to Rab11a, the Rab11b compartment in the apical region is not as dependent upon microtubules. While Rab11a is known to regulate transferrin trafficking in nonpolarized cells and IgA trafficking in polarized cells, Rab11b exhibited little colocalization with either of these cargoes. Thus, while Rab11a and Rab11b share high sequence homology, they appear to reside within distinct vesicle compartments.  相似文献   

8.
Polarized epithelial cells maintain the polarized distribution of basolateral and apical membrane proteins through a process of receptor-mediated endocytosis, sorting, and then recycling to the appropriate membrane domain. We have previously shown that the small GTP-binding proteins, Rab11a and Rab25, are associated with the apical recycling system of Madin-Darby canine kidney cells. Here we have utilized inducible expression of wild-type, dominant negative, and constitutively active mutants to directly compare the functions of Rab25 and Rab11a in postendocytic vesicular transport. We found that a Rab11a mutant deficient in GTP binding, Rab11aS25N, potently inhibited both transcytosis and apical recycling yet failed to inhibit transferrin recycling. Similarly, expression of either wild type Rab25 or the active mutant Rab25S21V inhibited both apical recycling and transcytosis of IgA by greater than 50% but had no effect on basolateral recycling of transferrin. Interestingly, the GTPase-deficient mutant Rab11aS20V inhibited basolateral to apical transcytosis of IgA, but had no effect on either apical or basolateral recycling. These results indicate that neither Rab11a nor Rab25 function in the basolateral recycling of transferrin in polarized Madin-Darby canine kidney cells cells, consistent with recent morphological observations by others. Thus, transferrin receptors must be recycled to the plasma membrane prior to sorting of apically directed cargoes into Rab11a/Rab25-positive apical recycling endosomes.  相似文献   

9.
Rab/Ypt GTPases represent a>60 member large family of membrane traffic regulators in eukaryotic cells. Members of this group display intrinsic GTPase activity varying over two orders of magnitude. Here, we show that Rab6A represents the RabGTPase with the slowest spontaneous GTPase activity yet measured (5x10(-6)s(-1)). Due to the very low intrinsic hydrolysis rate we were able to crystallise and solve the structure of the Rab6A:GTP complex to 1.82A resolution. Analysis of the structure suggests that low catalytic activity of the Rab6A might be due to high flexibility of the Switch II region and a low degree of constraint of critically important for catalysis Gln 72.  相似文献   

10.
S Albert  E Will    D Gallwitz 《The EMBO journal》1999,18(19):5216-5225
Ypt/Rab proteins constitute the largest subfamily of the Ras superfamily of monomeric GTPases and are regulators of vesicular protein transport. Their slow intrinsic GTPase activity (10(-4)-10(-3) min(-1) at 30 degrees C) has to be accelerated to switch the active to the inactive conformation. We have identified the catalytic domain within the C-terminal halves of two yeast GTPase-activating proteins (GAPs), Gyp1p and Gyp7p, with specificity for Ypt/Rab GTPases. The catalytically active fragments of Gyp1p and Gyp7p were more active than the full-length proteins and accelerated the intrinsic GTP hydrolysis rates of their preferred substrates by factors of 4.5 x 10(4) and 7.8 x 10(5), respectively. The K(m) values for the Gyp1p and Gyp7p active fragments (143 and 42 microM, respectively) indicate that the affinities of those GAPs for their substrates are very low. The catalytic domains of Gyp1p and Gyp7p contain five invariant arginine residues; substitutions of only one of them (R343 in Gyp1p and R458 in the analogous position of Gyp7p) rendered the GAPs almost completely inactive. We suggest that Ypt/Rab-GAPs, like Ras- and Rho-GAPs, follow the same mode of action and provide a catalytic arginine ('arginine finger') in trans to accelerate the GTP hydrolysis rate of the transport GTPases.  相似文献   

11.
Rab GTPases are crucial in the regulation of intracellular vesicular trafficking. A novel Rab GTPase gene, EoRab11a (GenBank accession no. EF061065 ), was isolated and identified from Euplotes octocarinatus cells in this study. It contains an ORF of 696-bp nucleotides, encoding 231 amino acids with a calculated molecular weight of 26.8 kDa. Alignment of EoRab11a with other Rab11 proteins from other eukaryotes demonstrated that these proteins shared 53–61% identity at the amino acid level. The recombinant EoRab11a was expressed in Escherichia coli and purified by immobilized metal chelate affinity chromatography and iron chromatography. The GTPase activity of EoRab11a was 0.0024 min−1 detected by HPLC at 30 °C. Three mutations were generated at amino acids Ser21 and Gly22 positions in the G1 domain of EoRab11a. All three mutants, S21P, S21G and G22R, increased the GTPase activity in vitro . Immunofluorescence microscopy results indicated that EoRab11a was localized on the phagosomal membrane during phagocytosis of E. octocarinatus . These data show that EoRab11a possesses GTP hydrolysis activity and may participate in vesicle transport events during phagocytosis of E. octocarinatus .  相似文献   

12.
L-type Ca(2+) channels (LTCCs) play a critical role in Ca(2+)-dependent signaling processes in a variety of cell types. The number of functional LTCCs at the plasma membrane strongly influences the strength and duration of Ca(2+) signals. Recent studies demonstrated that endosomal trafficking provides a mechanism for dynamic changes in LTCC surface membrane density. The purpose of the current study was to determine whether the small GTPase Rab11b, a known regulator of endosomal recycling, impacts plasmalemmal expression of Ca(v)1.2 LTCCs. Disruption of endogenous Rab11b function with a dominant negative Rab11b S25N mutant led to a significant 64% increase in peak L-type Ba(2+) current (I(Ba,L)) in human embryonic kidney (HEK)293 cells. Short-hairpin RNA (shRNA)-mediated knockdown of Rab11b also significantly increased peak I(Ba,L) by 66% compared when with cells transfected with control shRNA, whereas knockdown of Rab11a did not impact I(Ba,L). Rab11b S25N led to a 1.7-fold increase in plasma membrane density of hemagglutinin epitope-tagged Ca(v)1.2 expressed in HEK293 cells. Cell surface biotinylation experiments demonstrated that Rab11b S25N does not significantly impact anterograde trafficking of LTCCs to the surface membrane but rather slows degradation of plasmalemmal Ca(v)1.2 channels. We further demonstrated Rab11b expression in ventricular myocardium and showed that Rab11b S25N significantly increases peak I(Ba,L) by 98% in neonatal mouse cardiac myocytes. These findings reveal a novel role for Rab11b in limiting, rather than promoting, the plasma membrane expression of Ca(v)1.2 LTCCs in contrast to its effects on other ion channels including human ether-a-go-go-related gene (hERG) K(+) channels and cystic fibrosis transmembrane conductance regulator. This suggests Rab11b differentially regulates the trafficking of distinct cargo and extends our understanding of how endosomal transport impacts the functional expression of LTCCs.  相似文献   

13.
The Rab11 subfamily of GTPases plays an important role in vesicle trafficking from endosomes to the plasma membrane. At least six Rab11 effectors (family of Rab11-interacting proteins (FIPs)) have been shown to interact with Rab11 and are hypothesized to regulate various membrane trafficking pathways such as transferrin recycling, cytokinesis, and epidermal growth factor trafficking. In this study, we characterized interactions of FIPs with the Rab11 GTPase using isothermal titration calorimetric studies and mutational analysis. Our data suggest that FIPs cannot differentiate between GTP-bound Rab11a and Rab11b in vitro (50-100 nm affinity) and in vivo. We also show that, although FIPs interact with the GDP-bound form of Rab11 in vitro, the binding affinity (>1000 nm) is not sufficient for FIP and GDP-bound Rab11 interactions to occur in vivo. Mutational analysis revealed that both the conserved hydrophobic patch and Tyr628 are important for the GTP-dependent binding of Rab11 to FIPs. The entropy and enthalpy analyses suggest that binding to Rab11a/b may induce conformational changes in FIPs.  相似文献   

14.
Rab/Ypt GTPases represent a>60 member large family of membrane traffic regulators in eukaryotic cells. Members of this group display intrinsic GTPase activity varying over two orders of magnitude. Here, we show that Rab6A represents the RabGTPase with the slowest spontaneous GTPase activity yet measured (5x10(-6)s(-1)). Due to the very low intrinsic hydrolysis rate we were able to crystallise and solve the structure of the Rab6A:GTP complex to 1.82A resolution. Analysis of the structure suggests that low catalytic activity of the Rab6A might be due to high flexibility of the Switch II region and a low degree of constraint of critically important for catalysis Gln 72.  相似文献   

15.
Tyrosine phosphorylation of the Rab24 GTPase in cultured mammalian cells   总被引:4,自引:0,他引:4  
Several members of the large family of Rab GTPases have been shown to function in vesicular trafficking in mammalian cells. However, the exact role of Rab24 remains poorly defined. Rab24 differs from other Rab proteins in that it has a low intrinsic GTPase activity and is not efficiently prenylated. Here we report an additional unique property of Rab24; i.e., the protein can undergo tyrosine phosphorylation when overexpressed in cultured cells. Immunoblot analyses with specific anti-phosphotyrosine monoclonal antibodies revealed the presence of phosphotyrosine (pTyr) on myc-Rab24 in whole cell lysates and immunoprecipitated samples. No pTyr was detected on other overexpressed myc-tagged GTPases (H-Ras, Rab1b, Rab6, Rab11 or Rab13). Comparisons of myc-Rab24 in the soluble and particulate fractions from HEK293 and HEp-2 cells indicated that the cytosolic pool of Rab24 was more heavily phosphorylated than the membrane pool. Treatment of transfected cells with the broad-spectrum tyrosine kinase inhibitor, genistein, as well as the specific Src-family kinase inhibitor, PP2, eliminated the pTyr signal from Rab24. In contrast the receptor tyrosine kinase inhibitor, tyrphostin A25, had no effect. Tyrosine phosphorylation of Rab24 was reduced by alanine substitution of two unique tyrosines, one found in a strong consensus phosphorylation motif (Y [Formula: see text] ) in the hypervariable domain (Y172) and the other falling within the GXXXGK(S/T) motif known as the P-loop (Y17). The latter region is known to influence GTP hydrolysis in Rab proteins, so the phosphorylation of Y17 could contribute to the low intrinsic GTPase activity of Rab24. This is the first report of tyrosine phosphorylation in any member of the Ras superfamily and it raises the possibility that this type of modification could influence Rab24 targeting and interactions with effector protein complexes.  相似文献   

16.
Rab GTPases are essential for vesicular transport, whereas adenosine triphosphate (ATP) is the most important and versatile of the activated carriers in the cell. But there are little reports to clarify the connection between ATP and Rab GTPases. A cDNA clone (Rab14) from Bombyx mori was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein bound to [3H]-GDP and [35S]-GTPγS. Binding of [35S]-GTPγS was inhibited by guanosine diphosphate (GDP), guanosine triphosphate (GTP) and ATP. Rab14 showed GTP- and ATP-hydrolysis activity. The Km value of Rab14 for ATP was lower than that for GTP. Human Rab14 also showed an ATPase activity. Furthermore, bound [3H]-GDP was exchanged efficiently with GTP and ATP. These results suggest that Rab14 is an ATPase as well as GTPase and gives Rab14 an exciting integrative function between cell metabolic status and membrane trafficking.  相似文献   

17.
cGMP-dependent protein kinase II (cGK-II) is implicated in several physiological functions including intestinal secretion, bone growth, and learning and memory, but the detailed mechanisms are still unclear. To identify proteins that are involved in cGMP/cGK-II signaling, we performed yeast two-hybrid screening and identified Rab11b as a cGK-II-interacting protein that regulates the slow-recycling pathway. Interestingly, cGK-II interacted with the GDP-bound form of Rab11b (Rab11b S25N), but not the GTP-bound form, in mammalian cells. Immunofluorescence staining revealed that Rab11b S25N promoted the translocation of cGK-II from the plasma membrane to the cytoplasm and that the localization of cGK-II extensively overlapped with Rab11b. Furthermore, treatment with a membrane-permeable cGMP analog caused the rapid retranslocation of cGK-II and Rab11b S25N to the membrane. These data indicate that Rab11b is necessary for the trafficking of cGK-II and that the cGMP/cGK-II signaling pathway is closely related to Rab11b recycling pathway.  相似文献   

18.
Ypt/Rabs are Ras-related GTPases that function as key regulators of intracellular vesicular trafficking. Their slow intrinsic rates of GTP hydrolysis are catalyzed by GTPase-activating proteins (GAPs). Ypt/Rab-GAPs constitute a family of proteins that contain a TBC (Tre-2/Bub2/Cdc16) domain. Only three of the 51 family members predicted in the human genome are confirmed Ypt/Rab-GAPs. Here, we report the identification and characterization of a novel mammalian Ypt/Rab-GAP, TBC domain family, member 15 (TBC1D15). TBC1D15 is ubiquitously expressed and localized predominantly to the cytosol. The TBC domain of TBC1D15 exhibits relatively high homology with that of Gyp7p, a yeast Ypt/Rab-GAP. Furthermore, TBC1D15 stimulates the intrinsic GTPase activity of Rab7, and to a lesser extent Rab11, but is essentially inactive towards Rab4 or Rab6. These data increase the number of mammalian TBC domain family members with demonstrated Rab-GAP activity to four, and suggest that TBC1D15 may be involved in Rab7-mediated late endosomal trafficking.  相似文献   

19.
Members of the Rab subfamily of GTPases have been implicated as important components in vesicle trafficking in the eukaryotes, individual Rab proteins have a remarkable degree of specific subcellular localization. As a first step towards developing a set of compartment specific probes for studying protein trafficking in Babesia-infected erythrocyte, here we describe the cloning and characterization of Rab6 and Rab11 gene homologues in Babesia gibsoni (BgRab6 and BgRab11). The deduced amino acid sequence of both BgRab6 and BgRab11 contained the highly conserved GTP-binding consensus sequence and C-terminal cysteines. Northern blotting analysis of total RNA hybridized a 1.3 kb band on both BgRab6 and BgRab11 probed blots consistent with the expected size. Using a GTP-binding assay we demonstrated that Escherichia coli expressed recombinant BgRab6 and BgRab11 were able to bind GTP. BgRab6 and BgRab11 represent the first two molecular markers of B. gibsoni.  相似文献   

20.
By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号