首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In acute experiments on cats, the effects of injections of nitric oxide (NO) donors and an inhibitor of its synthesis into the sympathoexcitatory neuronal structures in the ventrolateral medulla (VLM) were studied to examine their effects on the peripheral mechanisms of the cardiovascular control. Unilateral injections of NO donors, nitroglycerine (1.3–5.2 nmol) or sodium nitroprusside (1.1–4.6 nmol) into the sites of the sympathoexcitatory neurons residing in the VLM induced the lowering of the systemic arterial pressure (SAP) in a dose-depended fashion. Two types of the hypotensive responses have been distinguished. In the first type responses, lowering of the SAP level was mainly due to a decrease in the peripheral vascular resistance (PVR), while the heart rate (HR) and stroke volume (SV) were only slightly reduced. In the second type responses, the drop in SAP level resulted mainly from a decrease in the HR and myocardial contractivity. These effects were induced by the limitation of the descending excitatory influences to the heart and vessels from the VLM sympathoexcitatory systems. An increase in the NO concentrations in the neuronal structures located 2.5–4.5 mm caudally to the trapezold bodies resulted in the first type responses, while that in the sites immediately adjacent to the caudal sympathoinhibitory area (0.5–1.5 mm rostrally to the XIIth cranial nerve roots) was associated with the second type of reactions. Stimulation of the endogenous NO release from the neurons after injections of L-arginine induced the same cardiovascular shifts as exogenic NO did, and attenuation of NO synthesis following injections of NO antagonist L-NMMA into the VLM neuronal structures evoked hemodynamic shifts of a reverse direction. Injections of NO donors inhibited the reflex responses induced by the activation of the carotid sinus receptors. Our data give further evidence for NO involvement in the inhibitory control of the cardiac activity and vascular tone through those VLM sympatoexcitatory neurons, which are involved in the system of central neurogenic cardiovascular control and the activity of which prevent the development of hypertension.Neirofiziologiya/Neurophysiology, Vol. 28, No. 2/3, pp. 111–120, March–June, 1996.  相似文献   

2.
1. We have previously shown that intracisternal administration of endothelin-1 (ET-1) elicited cardiorespiratory responses acting on the ventral surface of the medulla oblongata (VSM) subjacent to the rostral ventrolateral medulla (RVLM). In this study, we examined whether vasomotor and respiratory neurons in RVLM participate in above-mentioned responses and whether those neurons respond to direct iontophoretic application of ET-1 and/or an ET-A receptor antagonist, FR139317.2. Unit activity of vasomotor, respiratory, or nociceptive neurons in RVLM was recorded together with arterial blood pressure (AP) and heart rate (HR) in urethane-anesthetized Sprague-Dawley rats.3. Intracisternal administration or topical application of ET-1 (0.1–1 pmol) to VSM caused excitation of the majority of vasomotor neurons (15/18) and respiratory neurons (10/11) but not in nociceptive neurons (0/7). Changes in neuronal activity were in similar time course with corresponding changes in AP and HR. Iontophoretic application of ET-1 to the vicinity of recording neuron caused excitation in 19 of 21 vasomotor neurons without affecting AP nor HR. Remaining two neurons were insensitive to ET-1. FR139317 did not affect basal activity of the vasomotor neurons but inhibited ET-1-evoked excitation. Twenty-four of 40 respiratory neurons were excited and 13 were inhibited by iontophoretic application of ET-1. Five of ET-1-excited respiratory neurons were inhibited by FR139317 alone while six of ET-1-inhibited neurons were not affected by FR139317 alone. In both cases, FR139317 inhibited the effect of simultaneously applied ET-1. Iontophoretic application of ET-1 excited only one out of 10 nociceptive neurons so far tested.4. These results support the view that intracisternally administered ET-1 alters activity of vasomotor and respiratory neurons in the RVLM, at least in part by acting directly on neurons themselves and hence causes systemic cardiorespiratory changes. Majority of vasomotor and respiratory neurons should express ET-A receptors and some respiratory neurons are under tonic excitatory control by ET-1.  相似文献   

3.
In urethane-anesthetized rabbits, 209 spontaneously active neurons that responded to stimulation of aortic nerve A fibers were found within the ventrolateral medulla (VLM). The neurons, termed barosensory VLM neurons, were inhibited, except for three instances, by stimulation of A fibers. Forty-seven percent of barosensory VLM neurons tested (74 of 159) were activated antidromically by electrical stimulation of the dorsolateral funiculus at the C2 level. Activity of barosensory VLM neurons was enhanced by stimulation of carotid body chemoreceptors or the posterior hypothalamic area, whereas it was diminished by increases in arterial pressure elicited by injection of phenylephrine. Barosensory VLM neurons responded variously to stimulation, with two to three pulses at 40 or 100 Hz, of spinal afferents of cutaneous and muscle origins and the spinal trigeminal complex. Although stimulation of one group of somatosensory fibers could evoke different patterns of neuronal responses consisting of excitatory and inhibitory components, the following responses were most often encountered. Group II cutaneous afferents caused an inhibition. Recruitment of group III afferents brought about a brief excitatory component preceding it. Activation of group IV cutaneous fibers added a long latency excitatory component. Excitation of groups III and IV muscle afferents most often resulted in an inhibition, whereas stimulation of the spinal trigeminal complex elicited various combinations of excitatory and inhibitory components. These results are consistent with the view that neurons in the ventrolateral medulla receive barosensory and nonbarosensory inputs from various peripheral and central sources and participate in the control of sympathetic vasomotor activity and arterial pressure.  相似文献   

4.
Physiological and anatomic methods were used to determine whether neurons in the rostral ventrolateral medulla (RVLM), nucleus tractus solitarius (NTS), or hypothalamic paraventricular nucleus (PVN) mediate the cardiovascular response evoked from the dorsomedial hypothalamic nucleus (DMH), which is believed to play a key role in mediating responses to stress. In urethane-anesthetized rats, activation of neurons in the DMH by microinjection of bicuculline resulted in a large increase in arterial pressure, heart rate, and renal sympathetic nerve activity. The pressor and sympathoexcitatory responses, but not the tachycardic response, were greatly reduced after bilateral muscimol injections into the RVLM even when baseline arterial pressure was maintained at a constant level. These responses were not reduced by muscimol injections into the PVN or NTS. Retrograde tracing experiments identified many neurons in the DMH that projected directly to the RVLM. The results indicate that the vasomotor and cardiac components of the response evoked from the DMH are mediated by pathways that are dependent and independent, respectively, of neurons in the RVLM.  相似文献   

5.
The dorsomedial hypothalamic nucleus (DMH) is believed to play a key role in mediating vasomotor and cardiac responses evoked by an acute stress. Inhibition of neurons in the rostral ventrolateral medulla (RVLM) greatly reduces the increase in renal sympathetic nerve activity (RSNA) evoked by activation of the DMH, indicating that RVLM neurons mediate, at least in part, the vasomotor component of the DMH-evoked response. In this study, the first aim was to determine whether neurons in the medullary raphe pallidus (RP) region also contribute to the DMH-evoked vasomotor response, because it has been shown that the DMH-evoked tachycardia is mediated by the RP region. The second aim was to directly assess the effect of DMH activation on the firing rate of RVLM sympathetic premotor neurons. In urethane-anesthetized rats, injection of the GABA(A) receptor agonist muscimol (but not vehicle solution) in the RP region caused a modest ( approximately 25%) but significant reduction in the increase in RSNA evoked by DMH disinhibition (by microinjection of bicuculline). In other experiments, disinhibition of the DMH resulted in a powerful excitation (increase in firing rate of approximately 400%) of 5 out of 6 spinally projecting barosensitive neurons in the RVLM. The results indicate that neurons in the RP region make a modest contribution to the renal sympathoexcitatory response evoked from the DMH and also that sympathetic premotor neurons in the RVLM receive strong excitatory inputs from DMH neurons, consistent with the view that the RVLM plays a key role in mediating sympathetic vasomotor responses arising from the DMH.  相似文献   

6.
The peptidic ANG II receptor antagonists [Sar(1),Ile(8)]ANG II (sarile) or [Sar(1),Thr(8)]ANG II (sarthran) are known to decrease arterial pressure and sympathetic activity when injected into the rostral part of the ventrolateral medulla (VLM). In anesthetized rabbits and rats, the profound depressor and sympathoinhibitory response after bilateral microinjections of sarile or sarthran into the rostral VLM was unchanged after prior selective blockade of angiotensin type 1 (AT(1)) and ANG-(1---7) receptors, although this abolished the effects of exogenous ANG II. Unlike the neuroinhibitory compounds muscimol or lignocaine, microinjections of sarile in the rostral VLM did not affect respiratory activity. Sarile or sarthran in the caudal VLM resulted in a large pressor and sympathoexcitatory response, which was also unaffected by prior blockade of AT(1) and ANG-(1---7) receptors. The results indicate that the peptidic ANG receptor antagonists profoundly inhibit the tonic activity of cardiovascular but not respiratory neurons in the VLM and that these effects are independent of ANG II or ANG-(1---7) receptors.  相似文献   

7.
To evaluate the role of C1 neurons in the rostral ventrolateral medulla (RVLM) in cardiovascular regulation, we studied rats in which this cell group was destroyed by the injection of anti-dopamine-beta-hydroxylase-saporin into the RVLM. These immunotoxin injections resulted in 32-99% depletion of the RVLM-C1 neurons and approximately 50% depletion of the A5 cell population. In conscious rats with large (>80%) depletion of the RVLM-C1 cell population, resting arterial pressure was approximately 10 mmHg lower than in control injected rats, although heart rate was not significantly different. Similar results were observed when arterial pressure was recorded in urethan-anesthetized rats, although under anesthesia, heart rate was also reduced in rats with large (>80%) depletion of the RVLM-C1 neuronal population. Sympathoexcitatory responses to baroreceptor unloading, chemoreceptor activation, and electrical stimulation of sciatic nerve afferent fibers were attenuated in rats with >80% depletion of the RVLM-C1 cell population. These effects of RVLM-C1 plus A5 cell populations were not mimicked by either smaller lesions of the RVLM-C1 population or by selective destruction of the A5 cell population with 6-hydroxydopamine. Sympathoinhibitory responses such as decreases in arterial pressure and heart rate evoked by injection of GABA into the RVLM or by intravenous phenylbiguanide administration were not altered by RVLM-C1 plus A5 cell depletion. These data suggest that RVLM-C1 cells contribute to the maintenance of baseline arterial pressure and play an integral role in sympathoexcitatory responses.  相似文献   

8.
Previous evidence has shown sympathetic nerve responses to insular cortical (IC) stimulation are mediated by synapses within the lateral hypothalamic area (LHA) and ventrolateral medulla (VLM). The present study was aimed at determining the neurotransmitter(s) and receptor(s) involved at the synapse in the VLM. Twenty male Wistar rats were instrumented for renal nerve, arterial pressure, and heart rate recording. The IC or the LHA was stimulated with a bipolar electrode (200-1000 microA; 2 ms; 0.8 Hz) to elicit sympathetic nerve responses. Antagonists were then pressure-injected into the VLM (300 nL). Bilateral and unilateral kynurenate (25 mM) resulted in 100% block of IC-and LHA-stimulated sympathetic nerve responses. Bilateral injection of the non-NMDA (N-methyl-D-aspartate) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 200 microM) also resulted in up to 100% block of IC and LHA sympathetic responses. In addition, unilateral injections of CNQX were made in two animals, resulting in 100 and 83% block of LHA sympathetic responses. Bilateral injection of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5; 200 microM) did not affect the response to IC or LHA stimulation. Kynurenate, CNQX, and AP5 all resulted in an elevation of baseline sympathetic nerve activity and a pressor response. Kynurenate resulted in a 263+/-79% increase in baseline activity, while CNQX and AP5 resulted in 83+/-19% and 91+/-21% increases. respectively. Bilateral injections of antagonists for GABA(A) (bicuculline; 0.1 microM), acetylcholine (atropine; 0.1 microM) and catecholaminergic alpha and beta receptors (phentolamine and propranolol: 0.1 microM) had no effect on LHA sympathetic responses. Thus, sympathetic responses originating in the IC and LHA are mediated by a non-NMDA receptors in the VLM, which are likely AMPA receptors.  相似文献   

9.
The effects of endothelin (ET) agonists on airway mechanics and bronchial blood flow were studied as well as the effects of mixed ET-receptor antagonist bosentan on allergen-induced airway reactions in the pig. ET agonists [ET-1, ET-3, and the ET(B) receptor-selective agonist Sarafotoxin 6c (Sf6c)] were given as intravenous injections (0.4-200 pmol/kg) to eight anesthetized pigs. Bosentan (10 mg/kg iv) was then administered, and the injections were repeated. Only Sf6c caused a significant increase in airway resistance, and this response was blocked by bosentan. Sf6c and ET-1 (200 and 400 pmol/kg, respectively) were also given as aerosols to five pigs. Sf6c, but not ET-1, caused bronchoconstriction via this route. All agonists (intravenous) caused increases in bronchial vascular conductance, an effect that was blocked by an NO-synthase inhibitor (N(G)-nitro-L-arginine) but unaffected by a cyxlooxygenase inhibitor (diclofenac). Fourteen pigs were sensitized with ascaris suum antigen. Under anesthesia, eight pigs were pretreated with bosentan, and six pigs were controls. They were all challenged with allergen aerosol resulting in acute bronchoconstriction and elevation of ET-1 in bronchoalveolar lavage fluid. Bosentan did not affect the maximal acute airway obstruction but markedly increased baseline bronchial vascular conductance, suggesting a basal vascular tone regulated by ETs. In conclusion, ETs induce bronchoconstriction primarily via the ET(B) receptor in the pig. However, ETs are probably not involved in the allergen-induced acute bronchoconstriction in this model.  相似文献   

10.
Portal hypertension due to either prehepatic portal hypertension or cirrhosis is associated with cardiovascular derangement. We aimed to delineate regulatory mechanisms in the brain stem cardiovascular nuclei in rat models of prehepatic portal hypertension and cirrhosis. Neuronal activation in the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM) were assessed by immunohistochemical staining for the immediate-early gene product Fos. In the same sections, catecholaminergic neurons were counted by tyrosine hydroxylase (TH) staining. Ninety minutes after hypotensive hemorrhage (or no volume challenge), the animals were killed for Fos and TH medullary staining. These protocols were repeated after capsaicin administration. The NTS of unchallenged sham-operated rats had scant Fos-positive cells (3.6 +/- 0.4 cells/section), whereas hemorrhage significantly increased Fos staining (91.8 +/- 14). In contrast, the unchallenged portal hypertensive and cirrhotic groups showed increased Fos staining (14.3 +/- 5.8 and 32.8 +/- 2.8, respectively), which hemorrhage did not alter significantly. The numbers of TH-positive cells were similar in the three unchallenged groups; double labeling revealed that approximately 50% of TH-positive cells were activated by hemorrhage in the sham and cirrhotic rats but not the portal hypertensive rats. Similar patterns of Fos and TH staining were observed in the VLM. Capsaicin treatment not only significantly reduced the Fos-positive neuron numbers in portal hypertensive and cirrhotic rats but also attenuated hemorrhage-induced Fos and double-positive cells in both NTS and VLM. These results suggest that disordered trafficking in capsaicin-sensitive nerves and central dysregulation contribute to blunted cardiovascular responsiveness in cirrhosis and prehepatic portal hypertension.  相似文献   

11.
We cloned cDNAs encoding urotensin II (UII)-related peptide (URP) and UII in Japanese eel, Anguilla japonica, the former being the first such cloning in teleost fishes. Unlike the exclusive expression of UII in the urophysis, the URP gene was expressed most abundantly in the brain (medulla oblongata) followed by the urophysis. Peripheral injections of URP into eels increased blood pressure by 16.1 ± 0.8 mmHg at 0.1 nmol/kg in ventral aortic blood pressure (P(VA)) and with similar potency and efficacy to that of UII (relative potency of URP to UII = 0.83). URP/UII and ANG II preferentially acted on the branchial and systemic circulations, respectively, and the duration of effect was distinct among the three peptides in the order of UII (60 min) >URP (30 min) >ANG II (14 min) in P(VA). Urantide, a mammalian UII receptor antagonist, inhibited the URP effect (-63.6 ± 5.2%) to a greater extent than for UII (-39.9 ± 5.0%). URP and UII constricted isolated eel branchial and systemic arteries, showing their direct actions on the vascular smooth muscle. Central injection of URP increased blood pressure by 12.3 ± 0.8 mmHg at 50 pmol/eel in P(VA) and with similar efficacy but less potency (relative potency = 0.47) and shorter duration compared with UII. The central actions of URP/UII were more potent on the branchial circulation than on the systemic circulation, again opposite the effects of ANG II. The similar responses to peripheral and central injections suggest that peripheral hormones may act on the brain. Taken together, in eels, URP and UII are potent cardiovascular hormones like ANG II, acting directly on the peripheral vasculature, as well as a central vasomotor site, and their actions are mediated to different degrees by the UII receptor.  相似文献   

12.
We examined the effects of destroying bulbospinal catecholaminergic neurons with the immunotoxin anti-dopamine beta-hydroxylase-saporin (anti-DbetaH-Sap) on splanchnic nerve activity (SNA) and selected sympathetic reflexes in rats. Anti-DbetaH-Sap was administered into the thoracic spinal cord with the retrograde tracer fast blue. After 3-5 wk, anti-DbetaH-Sap eliminated most bulbospinal C1 (>74%), C3 ( approximately 84%), A5 ( approximately 98%), and A6 cells. Noncatecholaminergic bulbospinal neurons of the rostral ventrolateral medulla and serotonergic neurons were spared. Under chloralose anesthesia, mean arterial pressure and heart rate of anti-DbetaH-Sap-treated rats (3-5 wk) were normal. Resting SNA was not detectably altered, but the baroreflex range and gain were reduced approximately 40% (P < 0.05). Phenyl biguanide-induced decreases in mean arterial pressure, heart rate, and SNA were unchanged by anti-DbetaH-Sap, but the sympathoexcitatory response to intravenous cyanide was virtually abolished (P < 0.05). Rats that received spinal injections of saporin conjugated to an anti-mouse IgG had intact bulbospinal C1 and A5 cells and normal physiological responses. These data suggest that C1 and A5 neurons contribute modestly to resting SNA and cardiopulmonary reflexes. However, bulbospinal catecholaminergic neurons appear to play a prominent sympathoexcitatory role during stimulation of chemoreceptors.  相似文献   

13.
The present study was undertaken to investigate the effects of endothelin (ET) isopeptides on the pulmonary vascular bed of the intact spontaneously breathing cat under conditions of constant pulmonary blood flow and left atrial pressure. When pulmonary vasomotor tone was actively increased by intralobar infusion of U-46619, intralobar bolus injections of ET-1 (1 microgram), ET-2 (1 microgram), and ET-3 (3 micrograms) produced marked reductions in pulmonary and systemic vascular resistances. The pulmonary vasodilator response to each ET isopeptide was not altered by atropine (1 mg/kg iv), indomethacin (2.5 mg/kg iv), and ICI 118551 (1 mg/kg iv) but was significantly diminished by glybenclamide (5 mg/kg iv). This dose of glybenclamide significantly diminished the decrease in lobar arterial and systemic arterial pressures in response to intralobar injection of pinacidil (30 and 100 micrograms) and cromakalim (10 and 30 micrograms), whereas pulmonary vasodilator responses to acetylcholine (0.03 and 0.1 microgram), prostaglandin I2 (0.1 and 0.3 microgram), and isoproterenol (0.03 and 0.1 microgram) were not altered. The systemic vasodilator response to each ET isopeptide was not changed by glybenclamide or by the other blocking agents studied. The present data comprise the first publication demonstrating that ET-1, ET-2, and ET-3 dilate the pulmonary vascular bed in vivo. The present data further suggest that the pulmonary vasodilator response to ET isopeptides depends, in part, on activation of potassium channels and is mediated differently from the systemic vasodilator response to these substances. Contrary to earlier work, the present data indicate the pulmonary vascular response to ET isopeptides does depend on the preexisting level of pulmonary vasomotor tone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The present study evaluated the contribution of the sympathetic nervous system to the adverse hemodynamic action of ethanol on hypotensive responses in conscious unrestrained spontaneously hypertensive rats. Ethanol caused a dose-related attenuation of the hypotensive effect of guanabenz. An equivalent hypotensive response to sodium nitroprusside was not influenced by ethanol, which indicates a potential specific interaction between ethanol and guanabenz. Alternatively, it is possible that a preexisting high sympathetic nervous system activity, which occurred during nitroprusside infusion, may mask a sympathoexcitatory action of ethanol. Further, ethanol (1 g/kg) failed to reverse the hypotensive effect of the ganglionic blocker hexamethonium. This suggests that a centrally mediated sympathoexcitatory action of ethanol is involved, at least partly, in the reversal of hypotension. In addition, the antagonistic interaction between ethanol and guanabenz seems to take place within the central nervous system and involves opposite effects on central sympathetic tone. Finally, changes in plasma catecholamines provide supportive evidence for the involvement of the sympathetic nervous system in this interaction. In a separate group of conscious spontaneously hypertensive rats, ethanol (1 g/kg) reversed the guanabenz-evoked decreases in blood pressure and plasma catecholamine levels. It is concluded that (i) ethanol adversely interacts with centrally acting antihypertensive drugs through a mechanism that involves a directionally opposite effect on sympathetic activity, and (ii) a sympathetically mediated pressor effect of ethanol is enhanced in the presence of an inhibited central sympathetic tone.  相似文献   

15.
This study sought to identify whether central endothelin (ET) receptor activation contributes to the elevated pressure in spontaneously hypertensive rats (SHR) and whether an ET-stimulated vasopressin (AVP) release mediates the increased pressure. In Wistar Kyoto (WKY) rats, intracerebroventricular ET-1 induced a dose-dependent pressor response that was shifted rightward in SHR. ET(A) antagonism decreased mean arterial pressure in baroreflex-intact SHR (P<0.01), consistent with inhibition of endogenous ET-1, and blocked the pressor response to exogenous ET-1 in both strains. ET-1 increased AVP only after sinoaortic denervation (P<0.05). Contrary to WKY, sinoaortic denervation was required to elicit a significant pressor response with 5 pmol ET-1 in SHR. Sinoaortic denervation permitted ET-1 to increase AVP in both strains, and peripheral V(1) blockade decreased pressure in denervated but not intact rats. After nitroprusside normalized pressure in SHR, the pressor and AVP secretory responses paralleled those in WKY. Thus endogenous ET(A) receptor mechanisms contribute to hypertension, independent of AVP, in baroreflex-intact SHR. Although blunted in the hypertensive state, the arterial baroreflex buffers the ET-1-induced pressor and AVP secretory responses in both strains.  相似文献   

16.
Intracerebroventricular (ICV) injections of prostacyclin (PGI2) produced biphasic blood pressure responses consisting of an initial hypotensive phase followed by a sustained pressor phase in awake rats. Heart rate increased following such injections in either awake or anesthetized rats. PGI2, 1 microgram, produced biphasic responses and, 10 micrograms, purely vasodepressor responses in anesthetized rats, but abdominal sympathetic nerve firing recorded was consistently increased. Hypophysectomy did not affect the hypotensive phase of the responses. These results indicate that the initial hypotension can not be explained by centrally-induced changes in sympathetic nerve activity or vasopressin release, but may be due to peripheral effects of PGI2 leaking from the injection site.  相似文献   

17.
The cardiovascular effects of endothelin (ET)-1 and the recently sequenced homologous trout ET were examined in unanesthetized trout, and vascular capacitance curves were constructed to evaluate the responsiveness of the venous system to ET-1. A bolus dose of 667 pmol/kg ET-1 doubled ventral aortic pressure; produced a triphasic pressor-depressor-pressor response in dorsal aortic pressure (P(DA)); increased central venous pressure, gill resistance, and systemic resistance; and decreased cardiac output, heart rate, and stroke volume. These responses were dose dependent. Bolus injection of trout ET (333 or 1,000 pmol/kg) produced essentially identical, dose-dependent cardiovascular responses as ET-1. Dorsal aortic infusion of 1 and 3 pmol. kg(-1). min(-1) ET-1 and central venous infusion into the ductus Cuvier of 0.3 and 1 pmol. kg(-1). min(-1) produced similar dose-dependent cardiovascular responses, although the increase in P(DA) became monophasic. The heightened sensitivity to central venous infusion was presumably due to the more immediate exposure of the branchial vasculature to the peptide. Infusion of 1 pmol. kg(-1). min(-1) ET-1 decreased vascular compliance but had no effect on unstressed blood volume. These results show that ETs affect a variety of cardiovascular functions in trout and that branchial vascular resistance and venous compliance are especially sensitive. The multiplicity of effectors stimulated by ET suggests that this peptide was extensively integrated into cardiovascular function early on in vertebrate phylogeny.  相似文献   

18.
During baroreceptor unloading, sympathoexcitation is attenuated in near-term pregnant compared with nonpregnant rats. Alterations in balance among different excitatory and inhibitory inputs within central autonomic pathways likely contribute to changes in regulation of sympathetic outflow in pregnancy. Both baroreflex-dependent and baroreflex-independent GABAergic inputs inhibit sympathoexcitatory neurons within rostral ventrolateral medulla (RVLM). The present experiments tested the hypothesis that influence of baroreflex-independent GABAergic inhibition of RVLM is greater in pregnant compared with nonpregnant rats. Afferent baroreceptor inputs were eliminated by bilateral sinoaortic denervation in inactin-anesthetized rats. In pregnant compared with nonpregnant rats, baseline mean arterial pressure (MAP) was lower (pregnant = 75 +/- 6 mmHg, nonpregnant = 115 +/- 7 mmHg) and heart rate was higher (pregnant = 381 +/- 10 beats/min, nonpregnant = 308 +/- 10 beats/min). Pressor and sympathoexcitatory [renal sympathetic nerve activity, (RSNA)] responses due to bilateral GABA(A) receptor blockade (bicuculline, 4 mM, 100 nl) of the RVLM were greater in pregnant rats (delta MAP: pregnant = 101 +/- 4 mmHg, nonpregnant = 80 +/- 6 mmHg; delta RSNA: pregnant = 182 +/- 23% control, nonpregnant = 133 +/- 10% control). Unexpected transient sympathoexcitatory effects of angiotensin AT(1) receptor blockade in the RVLM were greater in pregnant rats. Although excitatory responses to bicuculline were attenuated by prior RVLM AT1 receptor blockade in both groups, pressor responses to disinhibition of the RVLM remained augmented in pregnant rats. Increased influence of baroreflex-independent GABAergic inhibition in RVLM could contribute to suppressed sympathoexcitation during withdrawal of arterial baroreceptor input in pregnant animals.  相似文献   

19.
The formation, release, clearance and vascular effects of endothelin (ET)-like immunoreactivity (-LI) was studied in the pig in vivo. Intravenous infusion of ET-1, 2 and 3 (20 pmol/kg/min for 20 min) increased vascular resistance in the kidney, spleen and skeletal muscle. The most pronounced effects were evoked by ET-1 which caused increases in renal, splenic and skeletal muscle vascular resistance of 554, 528 and 38%, respectively, and a threshold response was observed at 80 pmol/l ET-LI in arterial plasma. During the infusion a large portion of arterial plasma, ET-LI was cleared over the kidney, spleen and skeletal muscle, whereby the most pronounced clearance was observed for ET-1 (73–93%). The ET-1 precursor Big-ET (1–39) given in a similar dose produced only a slight increase in renal vascular resistance (by 20%) and was cleared only over the kidney and not over the spleen or skeletal muscle. Using an ET-1 specific antiserum it was found that plasma ET-1 levels increased 11-fold during the infusion of Big-ET, indicating formation of ET-1 from Big-ET. The half-lives of circulating ET-1, 2 and 3 were 1.3–2.1 min and of Big-ET 8.9 min. Induction of asphyxia for 2 min increased the overflow of ET-LI from the spleen, suggesting local release, and caused splenic vasoconstriction. During i.v. administration of endotoxin for 4 h, arterial plasma ET-LI increased 7-fold and renal and splenic vasoconstrictor responses developed that correlated significantly with the arterial plasma ET-LI. Furthermore, a local release of ET-LI in the spleen was observed during endotoxin administration. Chromatographic characterization of the ET-LI in plasma during endotoxin administration revealed presence of ET-1 and Big-ET. It is concluded that there exists specificity both concerning the vasoconstrictor effects and removal from the circulation of ET peptides, both mechanisms being most prominent for ET-1 in the kidney. Furthermore ET-1 seems to be formed from circulating Big-ET and release of ET-LI can be detected during situations like asphyxia and sepsis.  相似文献   

20.
Electroacupuncture (EA) causes prolonged suppression of reflex elevations in blood pressure for 1-2 h in anesthetized preparations. A long-loop pathway involving the arcuate nucleus (ARC), ventrolateral periaqueductal gray, and rostral ventrolateral medulla (rVLM) is involved in sympathoinhibitory cardiovascular EA effects. However, the mechanisms and locations of the prolonged EA inhibition are unknown. We hypothesized that this effect is mediated through a long-loop pathway involving opioid, nociceptin, and gamma-aminobutyric acid (GABA) receptor activation in the rVLM. In anesthetized, ventilated cats application of bradykinin to the gallbladder every 10 min induced consistent reflex increases in blood pressure. Bilateral EA stimulation at the cardiovascular acupoints P5-6 overlying the median nerves reduced the reflex responses for at least 80 min. Bilateral blockade with kynurenic acid in the ARC 60 min after onset of EA inhibition reversed the cardiovascular response, suggesting a role for the ARC in the long-loop pathway during the prolonged inhibitory response. Unilateral microinjection with either an opioid or a GABA(A) antagonist in rVLM 50-60 min after the beginning of the EA response reversed EA inhibition of the cardiovascular excitatory reflex. Gabazine also reversed EA inhibition of cardiovascular premotor sympathetic rVLM neurons. Conversely, microinjection of a nociceptin/orphanin FQ peptide antagonist did not affect the prolonged inhibitory effect. Thus the ARC, an important component in the long-loop pathway in the EA cardiovascular response, is required for prolonged suppression of reflex cardiovascular excitatory responses by EA. Furthermore, in the rVLM, opioids and GABA, but not nociceptin, participate in the long-term EA-related inhibition of sympathoexcitatory cardiovascular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号