首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationships between VO2 at rest, VO2max and VO2 during submaximal work on a treadmill with body weight, height and lean body mass assessed by densitometry were analyzed annually in 39 boys aged 11 to 18 years. Interindividual differences in VO2 at rest and VO2max during growth depended in the first place on interindividual differences in lean body mass, to a lesser extent on differences in body weight and least on differences in height. Intersubject differences in VO2 during submaximal work were primarily conditioned by differences in body weight, due to the fact that, at a given running speed, energy output depends on body weight. The differences in submaximal VO2 depended to a lesser extent on differences in lean body mass and least on differences in height. The relationships between VO2 increments and increases in body dimensions were somewhat different in 90 boys between the ages of 11 and 15 years: VO2max increments were determined primarily by changes in body weight and height, changes in lean body mass being of secondary importance. Increases in submaximal VO2 were influenced decisively by increments in body weight, followed by increments in lean body mass and least by increments in height. In the equation y = a.xb expressing the relationship of VO2max to body weight and height, the values of b at the ages of 14 and 15 years were 0.87 and 0.88 in relation to body weight, 2.63 and 2.72 in relation to height. These values are significantly higher than the theoretical values of 0.67 for body weight and 2.00 for height. Similar significant differences from these theoretical values were found for all values between the ages of 11 and 15 years.  相似文献   

2.
In boys, the ages at which growth rates for body weight, height, VO2max, maximum O2 pulse and VImax reached their peaks were approximately the same (means and SD: 14.64 +/- 0.98, 14.67 +/- 0.99, 14.71 +/- 1.59, 14.38 +/- 1.36 and 14.64 +/- 1.42 years respectively). There was a positive relationship between the peak velocities of functional capacity indicators (VO2max 0.79 +/- 0.19 1.min-1.year-1, O2 pulse max 4.1 +/- 1.20 ml.year-1, VImax 27.3 +/- 7.15 l.min-1.year-1) and the peak growth velocity of weight and/or height (weight 9.1 +/- 1.92 kg.year-1, height 9.8 +/- 1.92 cm.year-1). A positive relationship between the age at peak velocity of VO2max and O2 pulse max with the age at peak velocity for body weight was also found (r = 0.524 and 0.400 respectively). No relationship was revealed between the age at peak velocity on the one hand and the peak velocities of body weight, height, VO2max, O2 pulse or VImax on the other. Moderate training did not influence acceleration in growth--the age at peak velocity and the peaks of the growth rate did not differ in groups with a different regime of exercise (higher - n = 8, medium - n = 9, lower - n = 12; the peak velocity of VO2max--means and SD--being 0.85 +/- 0.15, 0.76 +/- 0.22 and 0.78 +/- 0.17.min-1.year-1 respectively).  相似文献   

3.
We have previously shown that cardiorespiratory fitness predicts increasing fat mass during growth in white and African-American youth, but limited data are available examining this issue in Hispanic youth. Study participants were 160 (53% boys) overweight (BMI>or=85th percentile for age and gender) Hispanic children (mean+/-s.d. age at baseline=11.2+/-1.7 years). Cardiorespiratory fitness, assessed by VO2max, was measured through a maximal effort treadmill test at baseline. Body composition through dual-energy X-ray absorptiometry and Tanner stage through clinical exam were measured at baseline and annually thereafter for up to 4 years. Linear mixed models were used to examine the gender-specific relationship between VO2max and increases in adiposity (change in fat mass independent of change in lean tissue mass) over 4 years. The analysis was adjusted for changes in Tanner stage, age, and lean tissue mass. In boys, higher VO2max at baseline was inversely associated with the rate of increase in adiposity (beta=-0.001, P=0.03); this effect translates to a 15% higher VO2max at baseline resulting in a 1.38 kg lower fat mass gain over 4 years. However, VO2max was not significantly associated with changes in fat mass in girls (beta=0.0002, P=0.31). In overweight Hispanic boys, greater cardiorespiratory fitness at baseline was protective against increasing adiposity. In girls however initial cardiorespiratory fitness was not significantly associated with longitudinal changes in adiposity. These results suggest that cardiorespiratory fitness may be an important determinant of changes in adiposity in overweight Hispanic boys but not in girls.  相似文献   

4.
游泳训练对儿童最大有氧活动能力的影响   总被引:1,自引:0,他引:1  
本文利用步行机对91名8-11岁男女儿童进行最大有氧活动能力的测试,其中训练组42人选自北京市海滨区业余游泳队的儿童,对照组49人(男24人,女25人)选自与训练组儿童条件相近的普通学校学生。观察9个月的游泳训练对儿童有氧活动能力的影响。研究结果表明,训练组儿童的身高,体重,瘦体重和肺活量在观察前及观察后的两次测试中均高于对照组。观察期间形态指标的增长值和两组值在两组间大都无明显差别,表明两组儿童  相似文献   

5.
Maximum oxygen uptake (VO2max) was measured directly and predicted from cardiac frequency measurements in 54 healthy Chilean industrial workers aged 20 to 55 years, together with assessment of their dietary intake, body composition and blood chemistry. Measurement of VO2 was performed on a motor-driven treadmill. The predicted VO2max was obtained using a cycle ergometer by two methods: 1) the Astrand-Ryhming nomogram and 2) the linear relationship between "steady state" heart rate (HR) and submaximum work, with subsequent extrapolation to "maximum" heart rate. Extrapolation of the HR/load regression line to 170 bpm permitted determination of the physical working capacity at 170 bpm (W170). VO2max for the 20-29 year group (Group I) averaged 3624 ml.min-1 and decreased to 3066 ml.min-1 in the 50-55 year group (Group IV). Lower values were obtained using the Astrand-Ryhming nomogram and HR/load regression (-15% and -9% respectively). W170 was also affected by age (Group I: 190.6 W and Group IV: 158.5 W). No significant correlation were found between VO2max and plasma variables, with the exception of cholesterol (r = 0.59). On the contrary, anthropometric variables showed significant correlations with VO2max, which permitted the prediction of VO2max using multiple regression equations. The two best correlations were: 1. VO2max = 0.800 - 0.0225.(A) +0.0189.(W)+1.26.(H) (r = 0.87; p less than 0.001) 2. VO2max = 0.996 - 0.0176.(A) + 0.025.(W) + 0.838.(H) + 0.0255.(LBM) (r = 0.88; p less than 0.001) where A = years of age; W = body weight in kg; H = height in m and LBM = lean body mass in kg.  相似文献   

6.
The aim of this study was to investigate the effect of growth on ventilation and breathing pattern during maximal exercise oxygen consumption (VO2max) and their relationships with anthropometric characteristics. Seventy six untrained schoolboys, aged 10.5-15.5 years, participated in this study. Anthropometric measurements made included body mass, height, armspan, lean body mass, and body surface area. During an incremental exercise test, maximal ventilation (VEmax), tidal volume (VTmax), breathing frequency (fmax), inspiratory and expiratory times (tImax and tEmax), total duration of respiratory cycle (tTOTmax), mean inspiratory flow (VT/tImax), and inspiration fraction (tI/tTOTmax) were measured at VO2max. A power function was calculated between anthropometric characteristics and ventilatory variables to determine the allometric constants. The results showed firstly, that VEmax, VTmax, tImax, tEmax, tTOTmax, and VT/tImax increased with age and anthropometric characteristics (P less than 0.001), fmax decreased (P less than 0.001), and tI/tTOTmax remained constant during growth; secondly that lean body mass explained the greatest percentage of variance of VEmax (62.1%), VTmax (76.8%), and VT/tImax (70.6%), while anthropometric characteristics explained a slight percentage of variance of fmax and timing; and thirdly that VEmax, VTmax, and VT/tImax normalized by lean body mass did not change significantly with age. We concluded that at VO2max there were marked changes in ventilation and breathing pattern with growth. The changes in VEmax, VTmax, and VT/tImax were strongly related to the changes in lean body mass.  相似文献   

7.
儿童最大有氧活动能力的发展特征   总被引:4,自引:1,他引:3  
本文报告了我国463名10-19岁儿童青少年的最大有氧活动能力的发展特征。在青春早期,男女童的最大吸氧量绝对值均随年龄增长而增加,男童由1.75升/分增至3.10升/分,女童由1.44升/分增至2.07升/分,女童增长较少;以后女童即稳定于这一水平,男童仍略有增长。按身高及按最大心率计标的相对值与其有相似的特征。按体重和瘦体重计算的相对值,在男女童都未见随年龄增长的规律。男童VO2max绝对值及各  相似文献   

8.
Aerobic fitness and percent body fat were measured in a sample of 438 male Army recruits between the ages of 17 and 30 prior to the commencement of training. The sample came from all areas of England and Wales. Aerobic fitness, as represented by maximal oxygen uptake (VO2 max), was predicted from the Astrand submaximal bicycle heart rate test. Body fat was predicted from four skinfold measurements. Total group means +/- SD were: age, 19.5 +/- 2.5 years; VO2 max 41.7 +/- 8.3 ml/kg . min; and body fat, 14.5 +/- 4.8% of body weight. VO2 max varied with age, athletic participation and aptitude score. No relationship was found with occupation of parent, prior civilian occupation or smoking severity. When adjusted for methodological differences, VO2 max was slightly below similar Army entrants in Norway and the United States.  相似文献   

9.
Growth hormone (GH) treatment in adults with GH deficiency increases lean body mass and thigh muscle cross-sectional area. The functional significance of this was examined by incremental cycle ergometry in 24 GH-deficient adults treated in a double-blind placebo-controlled trial with recombinant DNA human GH (rhGH) for 6 mo (0.07 U/kg body wt daily). Compared with placebo, the rhGH group increased mean maximal O2 uptake (VO2max) (+406 +/- 71 vs. +133 +/- 84 ml/min; P = 0.016) and maximal power output (+24.6 +/- 4.3 vs. +9.7 +/- 4.8 W; P = 0.047), without differences in maximal heart rate or ventilation. Forced expiratory volume in 1 s, vital capacity, and corrected CO gas transfer were within normal limits and did not change with treatment. Mean predicted VO2max, based on height and age, increased from 78.9 to 96.0% in the rhGH group (compared with 78.5 and 85.0% for placebo; P = 0.036). The anaerobic ventilatory threshold increased in the rhGH group (+159 +/- 39 vs. +1 +/- 51 ml/min; P = 0.02). The improvement in VO2max was noted when expressed per kilogram body weight but not lean body mass or thigh muscle area. We conclude that rhGH treatment in adults with GH deficiency improves and normalizes maximal exercise performance and improves submaximal exercise performance and that these changes are related to increases in lean body mass and muscle mass. Improved cardiac output may also contribute to the effect of rhGH on exercise performance.  相似文献   

10.
To investigate the effect of endurance training on physiological characteristics during circumpubertal growth, eight young runners (mean starting age 12 years) were studied every 6 months for 8 years. Four other boys served as untrained controls. Oxygen uptake (VO2) and blood lactate concentrations were measured during submaximal and maximal treadmill running. The data were aligned with each individual's age of peak height velocity. The maximal oxygen uptake (VO2max; ml.kg-1.min-1) decreased with growth in the untrained group but remained almost constant in the training group. The oxygen cost of running at 15 km.h-1 (VO2 15, ml.kg-1.min-1) was persistently lower in the trained group but decreased similarly with age in both groups. The development of VO2max and VO2 15 (l.min-1) was related to each individual's increase in body mass so that power functions were obtained. The mean body mass scaling factor was 0.78 (SEM 0.07) and 1.01 (SEM 0.04) for VO2max and 0.75 (SEM 0.09) and 0.75 (SEM 0.02) for VO2 15 in the untrained and trained groups, respectively. Therefore, expressed as ml.kg-0.75.min-1, VO2 15 was unchanged in both groups and VO2max increased only in the trained group. The running velocity corresponding to 4 mmol.l-1 of blood lactate (nu la4) increased only in the trained group. Blood lactate concentration at exhaustion remained constant in both groups over the years studied. In conclusion, recent and the present findings would suggest that changes in the oxygen cost of running and VO2max (ml.kg-1.min-1) during growth may mainly be due to an overestimation of the body mass dependency of VO2 during running.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The purposes of this study were to provide baseline data on the peak oxygen consumption (VO2) of British children, aged 11-16 years and to examine the peak VO2 of children in relation to their pubertal stage of development. The peak VO2 of 226 boys and 194 girls was determined during either treadmill running or cycle ergometry. The sexual maturity of 320 of the children was estimated using Tanner's indices. Peak VO2 increased with chronological age in both sexes and from about the age of 12 years boys exhibited significantly higher (P less than 0.05) values than girls. Boys' peak VO2 in relation to body mass was consistent over the age range studied and was superior (P less than 0.05) to girls' values at all ages. It appears that mass-related peak VO2 is independent of sexual maturity in both sexes. The more mature boys demonstrated a significantly higher (P less than 0.05) peak VO2 (1.min-1) than the less mature boys on both ergometers. The more mature girls demonstrated significantly higher (P less than 0.05) peak VO2 (1.min-1) than the less mature girls only on the cycle ergometer. On both ergometers the differences between the peak VO2 of the girls and boys were more pronounced in the mature children whether expressed in relation to body mass or not. Comparison of the results with earlier data drawn from smaller samples failed to provide evidence to suggest that British children's peak VO2 has declined in recent years. No study with which to compare our maturity peak VO2 data appears to be available.  相似文献   

12.
Role of muscle loss in the age-associated reduction in VO2 max   总被引:6,自引:0,他引:6  
A progressive decline in maximal O2 consumption (VO2max) expressed traditionally as per kilogram body weight generally occurs with advancing age. To investigate the extent to which this decline could be attributable to the age-associated loss of metabolically active tissue, i.e., muscle, we measured 24-h urinary creatinine excretion, an index of muscle mass, in 184 healthy nonobese volunteers, ages 22-87 yr, from the Baltimore Longitudinal Study of Aging who had achieved a true VO2max during graded treadmill exercise. A positive correlation was found between VO2max and creatinine excretion in both men (r = 0.64, P less than 0.001) and women (r = 0.47, P less than 0.001). As anticipated, VO2max showed a strong negative linear relationship with age in both men and women. Creatinine excretion also declined with age in men and women. When VO2max was normalized for creatinine excretion, the variance in the VO2max decline attributable to age declined from 60 to 14% in men and from 50 to 8% in women. Thus comparing the standard age regression of VO2max per kilogram body weight with that in which VO2max is normalized per milligram creatinine excretion, the decline in VO2max between a hypothetical 30 yr old and a 70 yr old was reduced from 39 to 18% in men and from 30 to 14% in women. We conclude that in both sexes, a large portion of the age-associated decline in VO2max in non-endurance-trained individuals is explicable by the loss of muscle mass, which is observed with advancing age.  相似文献   

13.
Male Sprague-Dawley rats were assigned to three groups designated as diabetic, diabetic-plus-insulin, and control and tested for maximum oxygen consumption (VO2max) and maximum heart rate on three different occasions during the 6- to 8-wk experimental period. Compared with the prediabetic values and the means of the other two groups, diabetic animals had significantly higher submaximum and lower maximum VO2 values. These relationships prevailed when the groups were evaluated in terms of ml.kg-1.min-1 or ml.(kg0.79-1).min-1. In addition, the diabetic animals had significantly lower submaximum and maximum heart rates and shorter run times. Daily injections of insulin (2 U.day-1.rat-1) restored VO2max to within the limits of the control animals but did not normalize heart rates or run-time values. The linear relationship between heart rates and VO2 was repeatedly demonstrated with normal animals. However, this relationship progressively declined with the time course of diabetes. These results indicate that, in untreated diabetes, functional capacity is markedly reduced with the progression of the disease and suggest that alterations in the autonomic nervous system, tissue metabolic capacity, and decreases in lean body mass are responsible for the changes noted.  相似文献   

14.
Mean values for body size, body composition and endurance indices have been obtained from a homogeneous group of 125 physically active men to find predicted values of AT (age 23.4 +/- 4.3 years; height 175.9 +/- 6.5 cm; weight 72.2 +/- 8.9 kg; body fat 17.9 +/- 4.7% body weight, muscularity index 19.0 +/- 1.5 kg fat-free mass/cm2 X 10(-4) height; forced vital lung capacity 5667 +/- 815 cm3; VO2max 48.5 +/- 6.0 cm3 X kg-1 X min-1; anaerobic threshold 61.0 +/- 7.8% VO2max). Endurance performance and fitness indices were a little higher than average, but about 10% lower than in endurance-trained athletes. The authors suggest that standards of anaerobic threshold (AT) for ergonomics and endurance training should be about 55-65% VO2max, but not lower than 1800 cm3 O2 X min-1. The coefficients of correlation of AT relating to VO2max, PFO2 and submaximal load were significant at the 0.01 level. Using regression analysis, predicted values of AT were developed. A predicted value of AT can be obtained from the regression line of AT on Lsubmax used as a nomogram, during a simple PWC170 exercise test without blood or gas analysis.  相似文献   

15.
The effects of habitual cigarette smoking on cardiorespiratory responses to sub-maximal and maximal work were evaluated in nine adult nonsmokers and nine smokers with a mean age of 33 yr. A maximal treadmill test was followed by three tests at 45, 60 and 75% of each subject's VO(2)max. Compared to nonsmokers, the habitual smokers had a non-significantly lower VO(2)max in L/min and per lean body mass (9 and 6%, respectively), but had higher %fat (p<0.01), resulting in a significantly lower VO(2)max per kg body wt (13%, p<0.03). Maximal exercise ventilation (V(E)) was 16% lower in smokers. During sub-maximal work at equivalent exercise stress levels in the two groups, the V(E)/VO(2) ratio was higher in smokers by an average of 11% because VO(2) was lower and the respiratory exchange ratio values were significantly elevated in smokers at 75% of VO(2)max. Blood lactate concentrations in smokers were higher as workloads increased and O(2) pulse (VO(2)/HR) was significantly lower throughout, indicating reduced O(2) extraction, probably due to carbon monoxide. The resting HR was significantly higher in smokers and the HR recovery following all three submaximal exercises was significantly slower in smokers. These results show that detrimental cardiorespiratory effects of chronic cigarette smoking in apparently healthy individuals are evident at moderate exercise levels as reduced gas exchange efficiency in lungs and muscles.  相似文献   

16.
To examine the relationship between body weight in children and aerobic parameters of exercise, we determined the anaerobic threshold (AT), maximum O2 uptake (VO2max), work efficiency, and response time for O2 uptake (RT-VO2) in 109 healthy children (51 girls and 58 boys, range 6-17 yr old) using a cross-sectional study design. Gas exchange during exercise was measured breath by breath. The protocol consisted of cycle ergometry and a linearly increasing work rate (ramp) to the limit of the subject's tolerance. Both AT and VO2max increased systematically with body weight, whereas work efficiency and RT-VO2 were virtually independent of body size. The ratio of AT to VO2max decreased slightly with age, and its mean value was 60%. AT scaled to body weight to the power of 0.92, not significantly different from the power of 1.01 for VO2max. Thus both the AT and the VO2max increase in a highly ordered manner with increasing size, and as judged by AT/VO2max, the onset of anaerobic metabolism during exercise occurred at a relatively constant proportion of the overall limit of the gas transport system. We conclude that in children cardiorespiratory responses to exercise are regulated at optimized values despite overall change in body size during growth.  相似文献   

17.
The maximal oxygen uptake (Vo2 max) and ergometer load at a heart rate of 170 beats/min (PWC170) were determined in mentally retarded children (74 boys and 53 girls) of ages 12-15, whose IQ ranged from 36 to 91, and the results were compared with those for normal children. Mentally retarded boys and girls showed significantly inferior body height and weight, but no significant difference was found in skinfold thickness. The mean value of PWC170 for boys and girls was 14.34 kpm/kg/min and 11.31 kpm/kg/min, respectively, significantly less than that of the normal group. The mentally retarded boys had mean VO2 max per unit body weight of 42.4 ml/kg/min, which was significantly less than the 51.2 ml/kg/min of normal boys. The mentally retarded girls had a mean of 33.1 ml/kg/min which was also less than the 41.3 ml/kg/min of normal girls. The correlation coefficient between body weight and PWC170 (kpm/min) was 0.711 and 0.720 for boys and girls, respectively, while that between body weight and VO2 max (liter/min) was 0.641 for boys and 0.656 for girls. No significant correlation was found between IQ and PWC170 (kpm/kg/min) nor between IQ and VO2 max (ml/kg/min) both for boys and for girls. Similarly, no significant correlation was found between mental age and the VO2 max value (ml/kg/min).  相似文献   

18.
The purpose of this study was to investigate the changes in the body composition, body size, muscle strength, and VO2max after 24 weeks of resistance or endurance training and detraining in young men. Thirty healthy college-aged men (20.4 ± 1.36 years) participated in the study. Subjects were assigned to resistance training group (RTG, n = 10), endurance training group (ETG, n = 10), and control group (CG, n = 10). The training program consisted of running or weight-resistance exercise for 3 sessions per week under supervision. VO2max, upper and lower body strength (UBS, LBS), body fat, lean body mass, and body circumference were measured at baseline and after training and detraining. After the training period, the exercise groups demonstrated significant increases in VO2max and LBS (p < 0.05). The UBS, lean mass (LM), and body size of arm and calf were significantly greater in the RTG than in the other 2 groups (p<0.05). In addition, the strength and LM of the RTG were still greater than the baseline values after 24 weeks of detraining (p < 0.05). The conclusions of this study are (a) that endurance or resistance training alone led to training-specific improvements in physical performance, body composition, and body size of the arms for the young men examined and (b) that the RTG maintained the gains in strength and LM for more prolonged periods after training ceased than the endurance training group.  相似文献   

19.
Isometric muscle strength of the hand-grip and of trunk flexion and extension, and isokinetic torque of elbow and knee flexion and knee extension were assessed in a random sample of 8 and 13 year old Swedish children. The results were compared with respect to sex and age in absolute terms and relative to weight, height2 and estimates of lean body mass and cross-sectional muscle area. Daily physical activity was also estimated. The muscle strength variables were in general found to be very similar in the 8 year old boys and girls. In the 13 year old group the boys were generally stronger than the girls, in both absolute and relative terms, except for similar torque values during knee extension. The absolute and relative muscle strength and torque values were higher in the older than in the younger children, with the exception of trunk strength per unit of body weight and of lean body mass, which were similar in boys of both ages and significantly lower in the older than in the younger girls. No significant correlation was found between the estimates of physical activity and isometric and isokinetic muscle strength and torque.  相似文献   

20.
To investigate cardiovascular adjustments to combined stress of gravity and exercise during dynamic exercise prolonged over 60 minutes in upright position, the three experiments were carried out. In Experiment I, as performing moderate upright bicycling (66% VO2 max) until exhaustion (average 86 minutes) in 4 trained men, changing manners of cardiovascular adjustments were shown in three phases, which were (1) regulating set-point body temperature, (2) making to maintain suitable blood pressure, and (3) failing to control the blood pressure. In Experiment II, as performing moderate supine cycling (55% VO2 max) for 50 minutes under several LBNP conditions in 5 sedentary women, there were correspondingly similar changing manners of the cardiovascular adjustments to each of the phases given in Experiment I. In Experiment III, as examining tolerance of orthostatic circulatory regulation, the tolerance was significantly correlated to VO2 max and lean body mass (LBM) (both p less than 0.05) in 8 sedentary women. When a moderate upright exercise is performed over 60 minutes in upright position, the performance should be influenced by total muscle mass indicated by LBM as well as by VO2 max, because the muscle mass could play a valuable role in the tolerance of orthostatic circulatory regulation vs. gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号