首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The urokinase-type plasminogen activator receptor (uPAR) has been implicated as a modulator of several biochemical processes that are active during tumor invasion and metastasis, e.g. extracellular proteolysis, cell adhesion, and cell motility. The structural basis for the high affinity interaction between the urokinase-type plasminogen activator (uPA) and uPAR, which focuses cell surface-associated plasminogen activation in vivo, is now thoroughly characterized by site-directed mutagenesis studies and x-ray crystallography. In contrast, the structural basis for the interaction between uPAR and the extracellular matrix protein vitronectin, which is involved in the regulation of cell adhesion and motility, remains to be clarified. In this study, we have identified the functional epitope on uPAR that is responsible for its interaction with the full-length, extended form of vitronectin by using a comprehensive alanine-scanning library of purified single-site uPAR mutants (244 positions tested). Interestingly, the five residues identified as "hot spots" for vitronectin binding form a contiguous epitope consisting of two exposed loops connecting the central fourstranded beta-sheet in uPAR domain I (Trp(32), Arg(58), and Ile(63)) as well as a proximal region of the flexible linker peptide connecting uPAR domains I and II (Arg(91) and Tyr(92)). This binding topology provides the molecular basis for the observation that uPAR can form a ternary complex with uPA and vitronectin. Furthermore, it raises the intriguing possibility that the canonical receptor and inhibitor for uPA (uPAR and PAI-1) may have reached a convergent solution for binding to the somatomedin B domain of vitronectin.  相似文献   

2.
The interaction between urokinase plasminogen activator (uPA) and its cellular receptor (uPAR) is a key event in cell surface-associated plasminogen activation, relevant for cell migration and invasion. In order to define receptor recognition sites for uPA, we have expressed uPAR fragments as fusion products with the minor coat protein on the surface of M13 bacteriophages. Sequence analysis of cDNA fragments encoding uPA-binding peptides indicated the existence of a composite uPA-binding structure including all three uPAR domains. This finding was confirmed by experiments using an overlapping 15-mer peptide array covering the entire uPAR molecule. Four regions within the uPAR sequence were found to directly bind to uPA: two distinct regions containing amino acids 13--20 and amino acids 74--84 of the uPAR domain I, and regions in the putative loop 3 of the domains II and III. All the uPA-binding fragments from the three domains were shown to have an agonistic effect on uPA binding to immobilized uPAR. Furthermore, uPAR-(154--176) increased uPAR-transfected BAF3-cell adhesion on vitronectin in the presence of uPA, whereas uPAR-(247--276) stimulated the cell adhesion both in the absence or presence of uPA. The latter fragment was also able to augment the binding of vitronectin to uPAR in a purified system, thereby mimicking the effect of uPA on this interaction. These results indicate that uPA binding can take place to particular part(s) on several uPAR molecules and that direct uPAR-uPAR contacts may contribute to receptor activation and ligand binding.  相似文献   

3.
The urokinase plasminogen activator receptor (uPAR) is a membrane protein active in localizing the plasminogen activation cascade system on the cell surface. The resulting pericellular proteolytic activity is responsible for degradation reactions in the extracellular matrix that are needed for the invasion of cancer cells, thus making uPAR a potential target for anti-invasive therapy based on binding antagonists. A remarkable property of the uPA-uPAR system is a pronounced species specificity in ligand recognition. We have now cloned and studied uPAR from four primate species and show that even though these sequences contain very few substitutions relative to the human uPAR, the receptor protein products differ markedly in terms of ligand selectivity. Thus, a well described competitive peptide antagonist directed against the human uPAR reacts with only one of the monkey receptors (chimpanzee uPAR), in spite of the fact that uPAR from all of the four species cross-reacts with human uPA. Notably, uPAR from African green monkey, which is completely devoid of reactivity with the peptide, contains only three substitutions relative to chimpanzee uPAR in the molecular regions critical for binding. These findings aid the elucidation of the structure/function relationship of uPAR and, unexpectedly, identify a structural distinction governing the binding of uPA and a very similar peptide antagonist.  相似文献   

4.
The receptor for urokinase-type plasminogen activator (uPAR) plays important roles in a number of physiological and pathological processes by virtue of its interactions with urokinase-type plasminogen activator (uPA), vitronectin (Vn), and several other proteins. The uPA binding site spans all three domains (D1 to D3) of uPAR. However, the nature of the Vn binding site within uPAR is still not clear. In this study, we conducted homolog-scanning mutagenesis on uPAR by switching 14 individual segments of 4-8 residues to their counterpart sequences of a uPAR homolog CD59. All 14 mutants were well expressed, reacted with a panel of monoclonal antibodies, and exhibited correct molecular weights. Of these 14 mutants, six mutants were defective in both uPA and Vn binding. Most importantly, we found two unique mutants uPAR(Asn172-Lys175) and uPAR(Glu183-Asn186) within the D2 domain, which displayed differential ligand binding activity: both had high affinity uPA binding, but completely lost Vn binding, indicating that these two sequences constitute a novel Vn binding site. Indeed, two peptides, P1 (153CPGSNGFHNNDTFHFLKC) and P2 (171CNTTKCNEGPILELENLPQ), derived from the sequences of the identified uPA and Vn binding pockets within D2, respectively, behaved like bona fide ligand binding sites: peptide P1 bound uPA but not Vn, whereas peptide P2 bound Vn and inhibited uPAR-mediated cell adhesion, but did not interact with uPA. Altogether, our data demonstrated that uPAR D2 contains two distinct ligand binding sites for uPA and Vn. Such information will help us better understand the complex roles of uPAR in cell adhesion, migration, and tumor metastasis.  相似文献   

5.
The role of the urokinase receptor (uPAR) in the internalization of the urokinase-plasminogen activator inhibitor type-1 (uPA.PAI-1) complex has been investigated. First, exploiting the species specificity of uPA binding, we show that mouse LB6 cells (that express a mouse uPAR) were unable to bind or degrade the human uPA.PAI-1 complex. On the other hand, LB6 clone 19 cells, which express a transfected human uPAR, degraded uPA.PAI-1 complexes with kinetics identical to the human monocytic U937 cells. We also show by immunofluorescence experiments with anti-uPA antibodies that in LB6 clone 19 cells, the uPA.PAI-1 complex is indeed internalized. While at 4 degrees C uPA fluorescence was visible at the cell surface, shift of the temperature to 37 degrees C caused a displacement of the immunoreactivity to the cytoplasmic compartment, with a pattern indicating lysosomal localization. If uPA.PAI-1 internalization/degradation is mediated by uPAR, inhibition of uPA.PAI-1 binding to uPAR should block degradation. Three different treatments, competition with the agonist amino-terminal fragment of uPA, treatment with a monoclonal antibody directed toward the binding domain of uPAR or release of uPAR from the cell surface with phosphatidylinositol-specific phospholipase C completely prevented uPA.PAI-1 degradation. The possibility that a serpin-enzyme complex receptor might be primarily or secondarily involved in the internalization process was excluded since a serpin-enzyme complex peptide failed to inhibit uPA.PAI-1 binding and degradation. Similarly, complexes of PAI-1 with low molecular mass uPA (33 kDa uPA), which lacks the uPAR binding domain, were neither bound nor degraded. Finally we also show that treatment of cells with uPA.PAI-1 complex caused a specific but partial down-regulation of uPAR. A similar result was obtained when PAI-1 was allowed to complex to uPA that had been previously bound to the receptor. The possibility therefore exists that the entire complex uPA.PAI-1-uPAR is internalized. All these data allow us to conclude that internalization of the uPA.PAI-1 complex is mediated by uPAR.  相似文献   

6.
The high-affinity interaction between urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays an important role in pericellular plasminogen activation. Since proteolytic degradation of the extracellular matrix has an established role in tumor invasion and metastasis, the uPA-uPAR interaction represents a potential target for therapeutic intervention. By affinity maturation using combinatorial chemistry we have now developed and characterized a 9-mer, linear peptide antagonist of the uPA-uPAR interaction demonstrating specific, high-affinity binding to human uPAR (K(d) approximately 0.4 nM). Studies by surface plasmon resonance reveal that the off-rate for this receptor-peptide complex is comparable to that measured for the natural protein ligand, uPA. The functional epitope on human uPAR for this antagonist has been delineated by site-directed mutagenesis, and its assignment to loop 3 of uPAR domain III (Met(246), His(249), His(251), and Phe(256)) corroborates data previously obtained by photoaffinity labeling and provides a molecular explanation for the extreme selectivity observed for the antagonist toward human compared to mouse, monkey, and hamster uPAR. When human HEp-3 cancer cells were inoculated in the presence of this peptide antagonist, a specific inhibition of cancer cell intravasation was observed in a chicken chorioallantoic membrane assay. These data imply that design of small organic molecules mimicking the binding determinants of this 9-mer peptide antagonist may have a potential application in combination therapy for certain types of cancer.  相似文献   

7.
The high affinity interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) represents one of the key regulatory steps in cell surface-associated plasminogen activation. On the basis on our crystal structure solved for uPAR in complex with a peptide antagonist, we recently proposed a model for the corresponding complex with the growth factor-like domain of uPA (Llinas et al. (2005) EMBO J. 24, 1655-1663). In the present study, we provide experimental evidence that consolidates and further develops this model using data from a comprehensive alanine scanning mutagenesis of uPAR combined with low resolution distance constraints defined within the complex using chemical cross-linkers as molecular rulers. The kinetic rate constants for the interaction between pro-uPA and 244 purified uPAR mutants with single-site replacements were determined by surface plasmon resonance. This complete alanine scanning of uPAR highlighted the involvement of 20 surface-exposed side chains in this interaction. Mutations causing delta deltaG > or = 1 kcal/mol for the uPA interaction are all located within or at the rim of the central cavity uniquely formed by the assembly of all three domains in uPAR, whereas none are found outside this crevice. Identification of specific cross-linking sites in uPAR and pro-uPA enabled us to build a model of the uPAR x uPA complex in which the kringle domain of uPA was positioned by the constraints established by the range of these cross-linkers. The nature of this interaction is predominantly hydrophobic and highly asymmetric, thus emphasizing the importance of the shape and size of the central cavity when designing low molecular mass antagonists of the uPAR/uPA interaction.  相似文献   

8.
The high-affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays a regulatory role for both extravascular fibrinolysis and uPAR-mediated adhesion and migration on vitronectin-coated surfaces. We have recently proposed that the adhesive function of uPAR is allosterically regulated via a "tightening" of its three-domain structure elicited by uPA binding. To challenge this proposition, we redesigned the uPAR structure to limit its inherent conformational flexibility by covalently tethering domains DI and DIII via a non-natural interdomain disulfide bond (uPAR(H47C-N259C)). The corresponding soluble receptor has 1) a smaller hydrodynamic volume, 2) a higher content of secondary structure, and 3) unaltered binding kinetics towards uPA. Most importantly, the purified uPAR(H47C-N259C) also displays a gain in affinity for the somatomedin B domain of vitronectin compared with uPAR(wt), thus recapitulating the improved affinity that accompanies uPA-uPAR(wt) complex formation. This functional mimicry is, intriguingly, operational also in a cellular setting, where it controls lamellipodia formation in uPAR-transfected HEK293 cells adhering to vitronectin. In this respect, the engineered constraint in uPAR(H47C-N259C) thus bypasses the regulatory role of uPA binding, resulting in a constitutively active uPAR. In conclusion, our data argue for a biological relevance of the interdomain dynamics of the glycolipid-anchored uPAR on the cell surface.  相似文献   

9.
The binding of urokinase-type plasminogen activator (uPA) to its specific cell-surface receptor (uPAR) localises the proteolytic cascade initiated by uPA to the pericellular environment. Inhibition of uPA activity or prevention of uPA binding to uPAR might have a beneficial effect on disease states wherein this activity is deregulated, e.g. cancer and some inflammatory diseases. To this end, a bifunctional hybrid molecule consisting of the uPAR-binding growth-factor domain of uPA (amino acids 1-47; GFuPA) at the N-terminus of plasminogen-activator inhibitor type 2 (PAI-2) was produced in Saccharomyces cerevisiae. The purified protein inhibited uPA with kinetics similar to placental or recombinant PAI-2 and was also found to bind to U937 cells and to FL amnion cells. GFuPA-PAI-2 competed with uPA, the N-terminal fragment of uPA and a proteolytic fragment of uPA (amino acids 4-43) in cell binding experiments, indicating that the molecule bound to the cells via uPAR. Hence, both the uPA-inhibitory and uPAR-binding domains of the hybrid molecule were functional, demonstrating the feasibility of the novel concept of introducing an unrelated, functional domain onto a member of the serine-protease-inhibitor superfamily.  相似文献   

10.
The cellular receptor for urokinase-type plasminogen activator (uPAR) is a glycolipid-anchored three-domain membrane protein playing a central role in pericellular plasminogen activation. We have found that urokinase (uPA) can cleave its receptor between domains 1 and 2 generating a cell-associated uPAR variant without ligand-binding properties. In extracts of U937 cells there are two uPAR variants which after complete deglycosylation have apparent molecular masses of 35,000 and 27,000. Analysis with monoclonal antibodies showed that these variants represented the intact uPAR and a two-domain form, uPAR(2+3), lacking ligand-binding domain 1. Trypsin treatment showed that both variants are present on the outside of the cells. Addition to the culture medium of an anticatalytic monoclonal antibody to uPA inhibited the formation of the uPAR(2+3), indicating that uPA is involved in its generation. Purified uPAR can be cleaved directly by uPA as well as by plasmin. The uPA-catalyzed cleavage does not require binding of the protease to the receptor through its epidermal growth factor-like receptor-binding domain, since low molecular weight uPA that lacks this domain also cleaves uPAR. This unusual reaction in which a specific binding protein is proteolytically inactivated by its own ligand may represent a regulatory step in the plasminogen activation cascade.  相似文献   

11.
The role of leucine-47 in determining the structure and activity of human epidermal growth factor was examined using site-directed mutagenesis. Wild type protein and four variants in which Leu47 was replaced by valine, glutamate, aspartate and alanine were produced from yeast. 1H NMR experiments demonstrated that substitution of Leu47 had little effect on the protein structure. The observed reduction in receptor binding affinity caused by the substitutions could thus be attributed to perturbation of a residue directly involved in receptor interactions.  相似文献   

12.
Urokinase-type plasminogen activator (uPA) induces cell adhesion and chemotactic movement. uPA signaling requires its binding to uPA receptor (uPAR/CD87), but how glycosylphosphatidylinositol-anchored uPAR mediates signaling is unclear. uPAR is a ligand for several integrins (e.g. alpha 5 beta 1) and supports cell-cell interaction by binding to integrins on apposing cells (in trans). We studied whether binding of uPAR to alpha 5 beta 1 in cis is involved in adhesion and migration of Chinese hamster ovary cells in response to immobilized uPA. This process was temperature-sensitive and required mitogen-activated protein kinase activation. Anti-uPAR antibody or depletion of uPAR blocked, whereas overexpression of uPAR enhanced, cell adhesion to uPA. Adhesion to uPA was also blocked by deletion of the growth factor domain (GFD) of uPA and by anti-GFD antibody, whereas neither the isolated uPA kringle nor serine protease domain supported adhesion directly. Interestingly, anti-alpha 5 antibody, RGD peptide, and function-blocking mutations in alpha 5 beta 1 blocked adhesion to uPA. uPA-induced cell migration also required GFD, uPAR, and alpha 5 beta 1, but alpha 5 beta 1 alone did not support uPA-induced adhesion and migration. Thus, binding of uPA causes uPAR to act as a ligand for alpha 5 beta 1 to induce cell adhesion, intracellular signaling, and cell migration. We demonstrated that uPA induced RGD-dependent binding of uPAR to alpha 5 beta 1 in solution. These results suggest that uPA-induced adhesion and migration of Chinese hamster ovary cells occurs as a consequence of (a) uPA binding to uPAR through GFD, (b) the subsequent binding of a uPA.uPAR complex to alpha 5 beta 1 via uPAR, and (c) signal transduction through alpha 5 beta 1.  相似文献   

13.
The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent with this multifunctional role, uPAR binds several extracellular ligands, including uPA and vitronectin. Structural studies suggest that uPAR possesses structural flexibility. It is, however, not clear whether this flexibility is an inherent property of the uPAR structure per se or whether it is induced upon ligand binding. The crystal structure of human uPAR in its ligand-free state would clarify this issue, but such information remains unfortunately elusive. We now report the crystal structures of a stabilized, human uPAR (H47C/N259C) in its ligand-free form to 2.4 Å and in complex with amino-terminal fragment (ATF) to 3.2 Å. The structure of uPARH47C/N259C in complex with ATF resembles the wild-type uPAR·ATF complex, demonstrating that these mutations do not perturb the uPA binding properties of uPAR. The present structure of uPARH47C/N259C provides the first structural definition of uPAR in its ligand-free form, which represents one of the biologically active conformations of uPAR as defined by extensive biochemical studies. The domain boundary between uPAR DI–DII domains is more flexible than the DII–DIII domain boundary. Two important structural features are highlighted by the present uPAR structure. First, the DI–DIII domain boundary may face the cell membrane. Second, loop 130–140 of uPAR plays a dynamic role during ligand loading/unloading. Together, these studies provide new insights into uPAR structure–function relationships, emphasizing the importance of the inter-domain dynamics of this modular receptor.  相似文献   

14.
Cancer invasion and metastasis is a process requiring a coordinated series of (anti-)adhesive, migratory, and pericellular proteolytic events involving various proteases such as urokinase-type plasminogen activator (uPA)/plasmin, cathepsins B and L, and matrix metalloproteases. Novel types of double-headed inhibitors directed to different tumor-associated proteolytic systems were generated by substitution of a loop in chicken cystatin, which is nonessential for cysteine protease inhibition, with uPA-derived peptides covering the human uPA receptor binding sequence uPA-(19-31). The inhibition constants of these hybrids toward cysteine proteases are similar to those of wild-type cystatin (K(i), papain (pm), 1.9-2.4; K(i), cathepsin B (nm), 1.0-1.7; K(i), cathepsin L (pm), 0.12-0.61). FACS analyses revealed that the hybrids compete for binding of uPA to the cell surface-associated uPA receptor (uPAR) expressed on human U937 cells. The simultaneous interaction of the hybrid molecules with papain and uPAR was analyzed by surface plasmon resonance. The measured K(D) value of a papain-bound cystatin variant harboring the uPAR binding sequence of uPA (chCys-uPA-(19-31)) and soluble uPAR was 17 nm (K(D) value for uPA/uPAR interaction, 5 nm). These results indicate that cystatins with a uPAR binding site are efficient inhibitors of cysteine proteases and uPA/uPAR interaction at the same time. Therefore, these compact and small bifunctional inhibitors may represent promising agents for the therapy of solid tumors.  相似文献   

15.
Interaction between the urokinase-type plasminogen activator (uPA) and its receptor (uPAR) localizes cellular proteolysis and promotes cellular proliferation and migration. The interaction between uPA and uPAR at the surface of epithelial cells thereby contributes to the pathogenesis of lung inflammation and neoplasia. In this study, we sought to determine if uPA itself alters uPAR expression by lung epithelial cells. uPA enhanced uPAR expression as well as (125)I-uPA binding in Beas2B lung epithelial cells in a time- and concentration-dependent manner. The uPA-mediated induction of uPAR is not accomplished through its receptor and requires enzymatic activity. The low molecular weight fragment of uPA, lacking the receptor binding domain, was as potent as intact two-chain uPA in inducing expression of uPAR at the cell surface. Plasmin, the end product of plasminogen activation, did not alter uPA-mediated uPAR expression. Induction of uPAR by uPA represents a novel pathway by which epithelial cells can regulate uPAR-dependent cellular responses that may contribute to stromal remodeling in lung injury or neoplasia.  相似文献   

16.
The ability to degrade the extracellular matrix by controlled proteolysis is an important property of malignant cancer cells, which enables them to invade the surrounding tissue and to gain access to the circulation by intravasation. One proteolytic system thought to be involved in these processes is urokinase-mediated plasminogen activation. Expression of a glycolipid-anchored receptor for urokinase-type plasminogen activator (uPA) targets this system to the cell surface. This receptor (uPAR) is composed of three homologous modules belonging to the Ly-6/uPAR/alpha-neurotoxin protein domain family. Integrity of the three-domain structure of uPAR is required for maintenance of its sub-nanomolar affinity for uPA, but the functional epitope for this interaction is primarily located in uPAR domain I. Using affinity maturation by combinatorial chemistry, we have recently identified a potent 9-mer peptide antagonist of the uPA-uPAR interaction having a high affinity for uPAR (K(d)< 1 nM). Photoaffinity labelling suggests that this peptide interacts with a composite binding site in uPAR involving both domains I and III. When tested in a chicken chorioallantoic membrane assay that was developed to quantify intravasation of human cells, this antagonist was able to reduce the intravasation of HEp-3 cancer cells by approx. 60%.  相似文献   

17.
Structural determinants for activity of glucagon-like peptide-2   总被引:1,自引:0,他引:1  
Glucagon-like peptide-2 (GLP-2) is a 33 amino acid gastrointestinal hormone that regulates epithelial growth in the intestine. Dipeptidylpeptidase IV cleaves GLP-2 at the position 2 alanine, resulting in the inactivation of peptide activity. To understand the structural basis for GLP-2 action, we studied receptor binding and activation for 56 GLP-2 analogues with either position 2 substitutions or alanine replacements along the length of the peptide. The majority of position 2 substitutions exhibited normal to enhanced GLP-2 receptor (GLP-2R) binding; in contrast, position 2 substitutions were less well tolerated in studies of receptor activation as only Gly, Ile, Pro, alpha-aminobutyric acid, D-Ala, or nor-Val substitutions exhibited enhanced GLP-2R activation. In contrast, alanine replacement at positions 5,6,17, 20, 22, 23, 25, 26, 30, and 31 led to diminished GLP-2R binding. Position 2 substitutions containing Asp, Leu, Lys, Met, Phe, Trp, and Tyr, and Ala substitutions at positions 12 and 21 exhibited normal to enhanced GLP-2R binding but greater than 75% reduction in receptor activation. D-Ala(2), Pro(2) and Gly(2), Ala(16) exhibited significantly lower EC(50)s for receptor activation than the parent peptide (p < 0.01-0.001). Circular dichroism analysis indicated that the enhanced activity of these GLP-2 analogues was independent of the alpha-helical content of the peptide. These results indicate that single amino acid substitutions within GLP-2 can confer structural changes to the ligand-receptor interface, allowing the identification of residues important for GLP-2R binding and receptor activation.  相似文献   

18.
In order to define the relative contribution of the proteolytic domain and the receptor-binding domain of urokinase plasminogen activator (uPA) toward its mitogenic properties we studied the effects of different uPA isoforms on migration and proliferation of human aortic smooth muscle cells (hSMC). The isoforms tested included native human glycosylated uPA, and two recombinant uPA forms, namely a recombinant uPA with wild type structure (r-uPA), and a uPA-mutant in which the first 24 N-terminal amino acid residues of the receptor binding domain were replaced by 13 foreign amino acid residues (r-uPAmut). Cell migration was evaluated using a micro-Boyden chamber assay, and cell proliferation assessed by measurement of [3H]-thymidine incorporation into DNA. Competition binding studies on hSMC using 125I-r-uPA as ligand demonstrated that r-uPA and r-uPAmut exhibited equivalent displacement profiles. However, migration of hSMC was promoted by r-uPA and not by r-uPAmut. r-uPA-induced migration occurred at concentrations (half-maximally effective concentration of 2 nM) approximating the Kd for uPA-uPAR binding (1 nM). r-uPA-induced migration was not affected by the plasmin inhibitor aprotinin. In contrast to their differential chemotactic properties, uPA, r-uPA and r-uPAmut, which possess similar proteolytic activities, all stimulated [3H]-thymidine incorporation in hSMC. Since the [3H]-thymidine incorporation response to each isoform occurred at concentrations (> 50 nM) much higher than necessary for uPAR saturation by ligand (1 nM), this mitogenic response may be independent of binding to uPAR. [3H]-thymidine incorporation responses to r-uPA and -uPAmut were sensitive to the plasmin inhibitor aprotinin, and uPA stimulated DNA synthesis was inhibited by plasminogen activator inhibitor. We conclude that hSMC migration in response to uPA depends upon on its binding to uPAR, whereas uPA-stimulated DNA synthesis in these cells requires proteolysis and plasmin generation.  相似文献   

19.
Vitronectin is a plasma protein which can deposit into the extracellular matrix where it supports integrin and uPA dependent cell migration. In earlier studies, we have shown that the plasma protein, vitronectin, stimulates focal adhesion remodeling by recruiting urokinase-type plasminogen activator (uPA) to focal adhesion sites [Wilcox-Adelman, S. A., Wilkins-Port, C. E., McKeown-Longo, P. J., 2000. Localization of urokinase-type plasminogen activator to focal adhesions requires ligation of vitronectin integrin receptors. Cell. Adhes. Commun.7, 477-490]. In the present study, we used a variety of vitronectin constructs to demonstrate that the localization of uPA to adhesion sites requires the binding of both vitronectin integrin receptors and the uPA receptor (uPAR) to vitronectin. A recombinant fragment of vitronectin containing the connecting sequence (VN(CS)) was able to support integrin-dependent adhesion, spreading and focal adhesion assembly by human microvessel endothelial cells. Cells adherent to this fragment were not able to localize uPA to focal adhesions. A second recombinant fragment containing both the amino-terminal SMB domain and the CS domain was able to restore the localization of uPA to adhesion sites. This fragment, which contains a uPAR binding site, also resulted in the localization of uPAR to adhesion sites. uPAR blocking antibodies as well as phospholipase C treatment of cells inhibited uPA localization to adhesion sites confirming a role for uPAR in this process. The SMB domain alone was unable to direct either uPAR or uPA to adhesion sites in the absence of the CS domain. Our results indicate that vitronectin-dependent localization of uPA to adhesion sites requires the sequential binding of vitronectin integrins and uPAR to vitronectin.  相似文献   

20.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR) on the surface of a cancer cell is considered to be a trigger for starting cancer invasions. In addition, the somatomedin B (SMB) domain of vitronectin binds simultaneously to uPAR to construct a ternary complex of uPAR–uPA–SMB. Here we present stable structures of the solvated complexes of uPAR–uPA and uPAR–uPA–SMB obtained by classical molecular mechanics simulations, and the specific interactions between uPAR, uPA and SMB are investigated by ab initio fragment molecular orbital calculations. The result indicates that the SMB binding enhances the binding affinity between uPAR and uPA, although there is no direct contact between SMB and uPA. In particular, the specific interaction between uPAR and the Lys36 residue of uPA is significantly affected by the SMB binding. The positively charged Lys23, Lys46 and Lys61 residues of uPA have strong attractive interactions to uPAR in both the uPAR–uPA and uPAR–uPA–SMB complexes, demonstrating the importance of these residues in the specific binding between uPAR and uPA. The current results on the specific interactions are informative for proposing potent antagonists, which block the uPA and SMB bindings to uPAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号