首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The responses of minimal and maximal fluorescence yields of chlorophyll a to irradiance of actinic white light were determined by pulse modulated fluorimetry in leaf discs from tobacco, Nicotiana tabacum, at 1.6, 20.5, and 42.0% (v/v) O2. Steady-state maximal fluorescence yield (Fm′, measured during a saturating light pulse) declined with increasing irradiance at all O2 levels. In contrast, the steady-state minimal fluorescence yield (Fo′, measured during a brief dark interval) increased with irradiance relative to that recorded for the fully dark-adapted leaf (Fo) or that observed after 5 minutes of darkness (Fo*). The relative magnitude of this increase was somewhat greater and extended to higher irradiances at the elevated O2 levels compared with 1.6% O2. Suppression of Fo′ was only observed consistently at saturating irradiance. The results are interpreted in terms of the occurrence of photosystem II units possessing exceedingly slow turnover times (i.e. “inactive” units). Inactive units play an important role, along with thermal deactivation of excited chlorophyll, in determining the response of in vivo fluorescence yield to changes in irradiance. Also, a significant interactive effect of O2 concentration and the presence or absence of far red light on oxidation of photosystem II acceptors in the dark was noted.  相似文献   

2.
The PAM-2000 portable chlorophyll fluorometer represents one of the first commercially available instruments utilizing the Pulse Amplitude Modulation (PAM) measurement principle, and has become a widely used platform for measuring chlorophyll fluorescence in a wide range of study systems. In this paper, we describe a new method for externally driving and gathering data from the PAM-2000, a method that allows the user to execute a pre-defined user run (or runs) and capture (1) rapid induction kinetics (at 2 ms frequency) during all saturating pulses, (2) measures of F, Fo, Fo′, Fm, and Fm′ associated with those same pulses, and (3) changes in fluorescence F at user-defined intervals between pulses, for the entire user run, with all data compressed into a single, manageable data logger file. Practically, the method makes possible, for example, a post-hoc evaluation of the appropriateness of saturation pulse lengths and intensities during a user run. More importantly it captures, during entire user runs, the varied information contained in slow changes in fluorescence between saturating pulses, as well as rapid induction kinetics, quenching coefficients and quantum yields all gathered simultaneously from all saturating flashes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
In biological oceanography, it has been widely accepted that the maximum quantum yield of photosynthesis is influenced by nutrient stress. A closely related parameter, the maximum quantum yield for stable charge separation of PSII, (φ PSII )m, can be estimated by measuring the increase in fluorescence yield from dark-adapted minimal fluorescence (Fo) to maximal fluorescence (Fm) associated with the closing of photosynthetic reaction centers with saturating light or with a photosynthetic inhibitor such as 3′-(3,4-dichlorophenyl)-1′,1′-dimethyl urea (DCMU). The ratio Fv/Fm (= (Fm− Fo)/Fm) is thus used as a diagnostic of nutrient stress. Published results indicate that Fv/Fm is depressed for nutrient-stressed phytoplankton, both during nutrient starvation (unbalanced growth) and acclimated nutrient limitation (steady-state or balanced growth). In contrast to published results, fluorescence measurements from our laboratory indicate that Fv/Fm is high and insensitive to nutrient limitation for cultures in steady state under a wide range of relative growth rates and irradiance levels. This discrepancy between results could be attributed to differences in measurement systems or to differences in growth conditions. To resolve the uncertainty about Fv/Fm as a diagnostic of nutrient stress, we grew the neritic diatom Thalassiosira pseudonana (Hustedt) Hasle et Heimdal under nutrient-replete and nutrient-stressed conditions, using replicate semicontinuous, batch, and continuous cultures. Fv/Fm was determined using a conventional fluorometer and DCMU and with a pulse amplitude modulated (PAM) fluorometer. Reduction of excitation irradiance in the conventional fluorometer eliminated overestimation of Fo in the DCMU methodology for cultures grown at lower light levels, and for a large range of growth conditions there was a strong correlation between the measurements of Fv/Fm with DCMU and PAM (r2 = 0.77, n = 460). Consistent with the literature, nutrient-replete cultures showed consistently high Fv/Fm (∼0.65), independent of growth irradiance. Under nutrient-starved (batch culture and perturbed steady state) conditions, Fv/Fm was significantly correlated to time without the limiting nutrient and to nutrient-limited growth rate before starvation. In contrast to published results, our continuous culture experiments showed that Fv/Fm was not a good measure of nutrient limitation under balanced growth conditions and remained constant (∼0.65) and independent of nutrient-limited growth rate under different irradiance levels. Because variable fluorescence can only be used as a diagnostic for nutrient-starved unbalanced growth conditions, a robust measure of nutrient stressed oceanic waters is still required.  相似文献   

4.
《BBA》1986,848(1):48-57
Using a combination of modulated and non-modulated light with synchronized detection it has been possible to monitor State 1–State 2 transitions in intact leaves as changes in the yield of modulated chlorophyll fluorescence. In the presence of excess far-red non-modulated light (713 nm) absorbed mainly by Photosystem I (PS I), the modulated fluorescence intensity was taken to represent Fo — the emission yield which occurs when the reaction centres of Photosystem II (PS II) are all open. On the other hand, superimposing saturating non-modulated wide-band, blue-green light resulted in a transitory maximum yield of modulated chlorophyll fluorescence, Fm, due to the total closure of the PS II reaction centres. In the absence of these additional lights the fluorescence level assumed a steady-state value, Fs, between Fo and Fm. All these parameters changed as the leaf slowly adapted to light of a given spectral composition. It was found that both Fo and Fm increased reversibly (by about 15–20%) during the transition from State 2 to State 1 such that the ratio of Fm to Fo remained constant, indicative of changes in absorption cross-section of PS II and PS I rather than alterations in ‘spillover’ which would cause preferential changes in Fm. It was also possible to estimate the fractions of light, β and α, channeled to PS II and PS I, respectively, from the values of Fo, Fm and Fs. In one approach, β was estimated in State 1, using the assumption that α + β = 1, and its variation during the subsequent state transition was assumed to follow proportional changes in Fo (or Fm). It was found that in State 2 there is a small loss (about 4%) of the total utilization of light in both photosystems. However, if such loss is neglected, assuming α + β is always unity, the calculated β was found to vary in the same direction and almost with the same magnitude as Fo (or Fm), indicating independently that a change in absorption cross-section in PS II (and PS I) had occurred. Consistent with these data were the light-saturation curves for the non-modulated far-red light-quenching effect in bringing the fluorescence from Fs to Fo in States 1 and 2. The ratio of the initial slopes of these curves indicates quantitatively both redistribution of light between PS I and PS II during the State 1–State 2 transitions and a partial loss of excitation energy in State 2.  相似文献   

5.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

6.
The photosynthetic activity of two Syrian barley landraces, Arabi (A.) Aswad and A. Abiad, grown under 120 mM NaCl, was studied, using gas exchange and chlorophyll (Chl) a fluorescence transient (OJIP) measurements. Salt treatment of barley seedlings decreased both the rates of photosynthesis and photosystem II (PSII) activity, as evaluated from chlorophyll fluorescence data. However, the noted decrease was dependent on the duration of the salt treatment and the barley cultivar. Several parameters (e.g., light absorption flux per cross section of leaf; time to reach maximum chlorophyll a fluorescence intensity; plastoquinone pool size; yield of heat loss; rate of reaction center closure; and the so-called Performance Index), calculated and inferred from Chl fluorescence measurements, and related to PSII activity, were affected after 24 h of salt application, but these changes were much more pronounced after 7 days of salt treatment. Similar changes were found for measured gas exchange parameters: CO2 uptake (photosynthetic) rate and stomatal conductance. The photosynthetic apparatus of the cultivar variety (c.v.) Arabi Aswad was found to be much more tolerant to salt treatment, compared with c.v. Arabi Abiad. After 7 days of salt treatment, the latter showed a very high value of the initial (minimal) fluorescence (Fo) and then essentially almost flat fluorescence transient curve; this result may be due to several causes that include structural changes as well as changes in the rate constants of different dissipative processes. The parameters that were most affected, by salt treatment, were: the time needed to reach the maximal chlorophyll fluorescence (Fm), and the inferred oxygen evolving complex activity (Fv/Fo, where Fv, is Fm  Fo), and the calculated Performance Index (PIABS) that depends on the efficiency and the yield of energy transfer and primary photochemistry. We suggest that the early reactions of the photosynthetic apparatus of barley plants could play a key role in their tolerance to salt stress. Further, we found that the first stage of salinity effect on photosynthesis of barley plants is related to stomatal conductance limitation rather than to PSII activity reduction. Thus, on the basis of our results on the two barley landraces, we recommend the use of a combination of gas exchange measurements along with the analysis of the OJIP fluorescence transient for the detection of salt stress-induced changes in plants.  相似文献   

7.
A newly developed modulation fluorometer is described which employs repetitive 1 s Xe-flashes for excitation light. Similar to the standard PAM Chlorophyll Fluorometer, which uses 1 s LED pulses for measuring light, the integrated measuring light intensity is sufficiently low to monitor the dark-fluorescence level, Fo. The maximal fluorescence yield, Fm, can be determined with high selectivity upon application of a saturating light pulse. The Xe-PAM displays exceptionally high sensitivity, enabling quenching analysis at chlorophyll concentrations as low as 1 g/l, thus allowing to assess photosynthesis of phytoplankton in natural waters like lakes, rivers and oceans. Due to high flexibility in the choice of excitation and emission wavelengths, this system also provides the experimental basis for a thorough study of fluorescence and photosynthesis properties of various algae classes with differing antenna organisation. By appropriate modifications, the instrument may as well be used to measure with great sensitivity and selectivity other types of fluorescence (e.g. NADPH-fluorescence), as well as light-scattering and absorbance changes.  相似文献   

8.
Photosynthetic electron transport of beachrock microbial mats growing in the intertidal zone of Heron Island (Great Barrier Reef, Australia) was investigated with a pulse amplitude modulation chl fluorometer providing four different excitation wavelengths for preferential excitation of the major algal groups (cyanobacteria, green algae, diatoms/dinoflagellates). A new type of fiberoptic emitter‐detector unit (PHYTO‐EDF) was used to measure chl fluorescence at the sample surface. Fluorescence signals mainly originated from cyanobacteria, which could be almost selectively assessed by 640‐nm excitation. Even after desiccation for long time periods under full sunlight, beachrock showed rapid recovery of photosynthesis after rehydration in the light (t1/2~ 15 min). However, when rehydrated in the dark, the quantum yield of energy conversion of PSII remained zero over extended periods of time. Parallel measurements of O2 concentration with an oxygen microoptode revealed zero oxygen concentration in the surface layer of rehydrated beachrock in the dark. Upon illumination, O2 concentration increased in parallel with PSII quantum yield and decreased again to zero in the dark. It is proposed that oxygen is required for preventing complete dark reduction of the PSII acceptor pools via the NADPH‐dehydrogenase/chlororespiration pathway. This hypothesis is supported by the observation that PSII quantum yield could be partially induced in the dark by flushing with molecular oxygen. Abbreviations: EDF, emitter‐detector unit; Fo, fluor‐escence yield of dark‐adapted sample; Fm, maximal fluorescence yield measured during saturation pulse; Fv, variable fluorescence yield; LED, light‐emitting diode; PAM, pulse amplitude modulation; PQ, plastoquinone  相似文献   

9.
昆仑山前山牧场海拔较高, 策勒绿洲海拔相对较低, 两者生境差异较大。以昆仑山前山牧场和策勒绿洲边缘两种不同生境条件下生长的6种牧草: 冰草(Agropyron cristatum)、无芒雀麦(Bromus inermis)、矮生高羊茅(Festuca elata)、披碱草(Elymus dahuricus )、红豆草(Onobrychis pulchella)及和田大叶(Medicago sativa var. luxurians)为试验材料, 研究了不同生境条件下牧草叶片叶绿素含量及叶绿素荧光动力学参数的变化情况。结果显示: (1)在两种生境条件下, 昆仑山前山牧场生境生长的牧草叶绿素a、叶绿素b、总叶绿素的含量明显较高, 生长在策勒绿洲生境的牧草品种叶绿素a/b值较高; (2)昆仑山前山牧场生境牧草最大荧光、光系统II (PSII)最大光化学效率、PSII潜在活性和单位面积反应中心的数量的值明显高于策勒绿洲生境品种, 而初始荧光、单位反应中心吸收的光能、单位反应中心捕获的能量、单位反应中心耗散的能量、荧光诱导曲线初始斜率值则低于策勒绿洲生境品种。因此, 两种生境下环境因子发生了改变, 对牧草产生综合的胁迫作用; 策勒绿洲生境明显对牧草生长产生了抑制, 策勒绿洲生境牧草的色素含量降低以及PSII的机构遭到损坏, 导致反应中心一部分失活或裂解, 剩余有活性的反应中心的效率增加, 昆仑山生境则相对比较适宜牧草生长; 两种生境不同牧草叶绿素含量和叶绿素荧光参数的变化幅度不同。  相似文献   

10.
A portable instrument for measuring chlorophyll fluorescence induction kinetics is described and examples of measurements are given. The instrument is centered around a statistically-mixed bifurcated optical fiber. One fiber branch guides the actinic light to the sample, whereas the other branch carries the emitted chlorophyll fluorescence to the photodetector. Scattered actinic light is cut out from the detector by a red interference filter. The instrument measures fast as well as slow fluorescence induction kinetics, but is particularly well designed for analyzing fast kinetics. The high time resolution and strong, variable actinic light mean that both Fo (non-variable fluorescence) and Fm (maximal fluorescence at the P-peak) are well defined. A built in microprocessor unit with attached memory stores the fluorescence induction curve and calculates key fluorescence parameters such as Fo, Fm, Fv (variable fluorescence equals Fm?Fo), Fv/Fm (the photochemical efficiency of photosystem II) and t1/2 (half rise time from Fo, to Fm). These values are digitally displayed after each recording and they (or the whole induction curve) can be stored in a memory and later retrieved. Because of a flexible setting of the instrument it can be used with high accuracy both for optically thick leaves and for diluted suspensions of algae or chloroplasts. A simple, light weight clamp cuvette for dark adaptation of leaves has been developed. It is equipped with a gate allowing the optical fiber to be inserted without daylight reaching the dark adapted portion of the leaf. The instrument has been developed for rapid monitoring of changes in activities and organization of the photosynthetic apparatus in vivo when plants are exposed to environmental stress both in the field and in the laboratory. Examples of measurements are given for differently treated leaves of Pinus sylvestris, Salix sp., Betula verrucosa, Zea mays, Epilobium angustifo-lium and for chloroplast thylakoids isolated from Spinacia oleracea.  相似文献   

11.
Effect of preheating of beet spinach leaves on chlorophyll a fluorescence yield was analyzed with the help of additional high intensity illumination pulses using a pulse modulated fluorometer. Preheating at mildly elevated temperature (35–45°C) causes a shift in the redox state of secondary donor of photosystem II, possibly due to uncoupling of phosphorylation because of thermal induced membrane disorganization and associated alkalinization of intra thylakoid space. Also, at these preheating temperatures, a rise in photosystem I catalyzed electron transfer has been shown to occur. These two effects induce rapid quenching of Chi a fluorescence, which drops even in the presence of actinic light, below the level of initial fluorescence (Fo′ monitored by the weak modulated probing light. Preheating of leaf segments induces an increase in fluorescence in the presence of dluron, which blocks electron flow between two photosystems, and thus this increases in fluorescence yield (Fo′ as monitored by weak modulated light, is not solely due to disorganization of light harvesting Chi-protein complex but also due to a shift in the redox equilibrium of the donor at the oxidizing side of photosystem II resulting in rapid reduction of QA the stable primary acceptor of photosystem II. In 50°C preheated DCMU treated samples, the fluorescence yield increases in weak modulated light and it approaches that of maximal steady state (Fmax) level. At preheating temperature of 48°–50°C, the inactivation of enzymes in the reducing side of photosystem I, causes an impairment of the reoxidation of QA and under this condition, a strong illumination causes quenching of Chi a fluorescence. This quenching seems to arise because of accumulation of the P680+, the oxidized physiological donor of photosystem which is a quencher of Chi a fluorescence. This quenching depended on the pulse intensity and duration which saturates P680+ accumulation and is greatly manifested when water oxidation complex is damaged.  相似文献   

12.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

13.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

14.
Summary Diurnal measurements of low temperature (77K) fluorescence at 690 nm (PS II) from north, south, east, and west facing cladode surfaces of Opuntia basilaris in Death Valley, California were made on six occasions during 1985. The absolute levels of F o(instantaneous fluorescence) and F m(maximum fluorescence), as well as the ratio F v/F m(variable fluorescence, F m-F o, over maximum fluorescence), were greater in the north face relative to the other faces. Diurnal decreases in F o, F mand F v/F mwere found concomitant with increases in incident photon flux area density (PFD). F v/F mwas fairly low throughout the year, indicative of photoinhibition, but became somewhat elevated after a spring rain. In early fall the quantum yield of the south face was considerably depressed relative to that of the north face, and corresponding differences were observed in F v/F m. A decrease in PFD during growth of glasshouse plants led to an increase in chlorophyll concentration, F oand F m, but not F v/F m. Although there was some variability in the quantum yield of well watered glasshouse cladodes, a correlation was found between quantum yield and the light and CO2 saturated rate of photosynthesis. When O. basilaris was water stressed under glasshouse conditions, reductions in quantum yield, F m, and F v/F mwere observed. Reductions in F v/F malways indicated a reduced quantum yield, although the converse was not necessarily so in well watered glasshouse plants. The results of this study indicate that O. basilaris is likely to experience photoinhibition throughout much of its life in Death Valley.Abbreviations CAM crassulacean acid metabolism - MPa megapascal - PFD photon flux area density - PS II photosystem II - vater potential - F o instantaneous fluorescence - F m maximum fluoescence - F o variable fluorescence  相似文献   

15.
The possibility that zeaxanthin mediates the dissipation of an excess of excitation energy in the antenna chlorophyll of the photochemical apparatus has been tested through the use of an inhibitor of violaxanthin de-epoxidation, dithiothreitol (DTT), as well as through the comparison of two closely related organisms (green and blue-green algal lichens), one of which (blue-green algal lichen) naturally lacks the xanthophyll cycle. In spinach leaves, DTT inhibited a major component of the rapidly relaxing high-energy-state quenching' of chlorophyll fluorescence, which was associated with a quenching of the level of initial fluorescence (F0) and exhibited a close correlation with the zeaxanthin content of leaves when fluorescence quenching was expressed as the rate constant for radiationless energy dissipation in the antenna chlorophyll. Green algal lichens, which possess the xanthophyll cycle, exhibited the same type of fluorescence quenching as that observed in leaves. Two groups of blue-green algal lichens were used for a comparison with these green algal lichens. A group of zeaxanthin-free blue-green algal lichens did not exhibit the type of chlorophyll fluorescence quenching indicative of energy dissipation in the pigment bed. In contrast, a group of blue-green algal lichens which had formed zeaxanthin slowly through reactions other than the xanthophyll cycle, did show a very similar response to that of leaves and green algal lichens. Fluorescence quenching indicative of radiationless energy dissipation in the antenna chlorophyll was the predominant component of high-energy-state quenching in spinach leaves under conditions allowing for high rates of steady-state photosynthesis. A second, but distinctly different type of high-energy-state quenching of chlorophyll fluorescence, which was not inhibited by DTT (i.e., it was zeaxanthin independent) and which is possibly associated with the photosystem II reaction center, occurred in addition to that associated with zeaxanthin in leaves under a range of conditions which were less favorable for linear photosynthetic electron flow. In intact chloroplasts isolated from (zeaxanthin-free) spinach leaves a combination of these two types of rapidly reversible fluorescence quenching occurred under all conditions examined.Abbreviations DTT dithiothreitol - F0 (or F0) yield of instantaneous fluorescence at open PS II reaction centers in the dark (or during actinic illumination) - FM (or FM) yield of maximum fluorescence induced by a saturation pulse of light in the dark (or during actinic illumination) - FV (or FV) yield of variable fluorescence induced by a saturating pulse of light in the dark (or during actinic illumination) - k D rate constant for radiationless energy dissipation in the antenna chlorophyll - SV Stern-Volmer equation - PFD photon flux density - PS I photosystem I - PS II photosystem II - QA acceptor of photosystem II - qN coefficient of nonphotochemical chlorophyll fluorescence quenching - qP coefficient of photochemical chlorophyll fluorescence quenching  相似文献   

16.
Hodges M  Barber J 《Plant physiology》1983,72(4):1119-1122
A study has been made on the State 1-State 2 transitions exhibited by the unicellular green algae Chlorella pyrenoidosa. Chlorophyll fluorescence induction curves from algae adapted to State 1 or State 2 have been analyzed and a comparison made with similar curves produced by decreasing the intensity of light going to the photosystem II reaction centers. In both cases, quenching of the maximum fluorescence yield (Fm) and the initial fluorescence yield (Fo) were observed so that the Fv/Fm ratio and the area above the induction curve (Amax) remained constant. The State 1-State 2 transition also produced changes in the βmax component indicative of some alteration within photosystem II organization. The implications of these experiments on the in vivo mechanism for energy redistribution between the two photosystems are discussed in terms of changes in absorption cross-section rather than being due to spillover from photosystem II to photosystem I. These changes may reflect the phosphorylation of the light-harvesting chlorophyll a/b protein complex and its subsequent migration away from the photosystem II core leading to its closer association with photosystem I.  相似文献   

17.
Previous work has shown that the maximum fluorescence yield from PS 2 of Synechococcus PCC 7942 occurs when the cells are at the CO2 compensation point. The addition of inorganic carbon (Ci), as CO2 or HCO3 , causes a lowering of the fluorescence yield due to both photochemical (qp) and non-photochemical (qN) quenching. In this paper, we characterize the qN that is induced by Ci addition to cells grown at high light intensities (500 mol photons m–2 s–1). The Ci-induced qN was considerably greater in these cells than in cells grown at low light intensities (50 mol photons m–2 s–1), when assayed at a white light (WL) intensity of 250 mol photons m–2 s–1. In high-light grown cells we measured qN values as high as 70%, while in low-light grown cells the qN was about 16%. The qN was relieved when cells regained the CO2 compensation point, when cells were illuminated by supplemental far-red light (FRL) absorbed mainly by PS 1, or when cells were illuminated with increased WL intensities. These characteristics indicate that the qN was not a form of energy quenching (qE). Supplemental FRL illumination caused significant enhancement of photosynthetic O2 evolution that could be correlated with the changes in qp and qN. The increases in qp induced by Ci addition represent increases in the effective quantum yield of PS 2 due to increased levels of oxidized QA. The increase in qN induced by Ci represents a decrease in PS 2 activity related to decreases in the potential quantum yield. The lack of diagnostic changes in the 77 K fluorescence emission spectrum argue against qN being related to classical state transitions, in which the decrease in potential quantum yield of PS 2 is due either to a decrease in absorption cross-section or by increased spill-over of excitation energy to PS 1. Both the Ci-induced qp (t 0.5<0.5 s) and qN (t 0.51.6 s) were rapidly relieved by the addition of DCMU. The two time constants give further support for two separate quenching mechanisms. We have thus characterized a novel form of qN in cyanobacteria, not related to state transitions or energy quenching, which is induced by the addition of Ci to cells at the CO2-compensation point.Abbreviations BTP- 1,3-bis[tris(hydroxymethyl)-methylaminopropane] - Chl- chlorophyll - Ci- inorganic carbon (CO2+HCO3 +CO3 2–) - DCMU- 3-(3,4-dichlorophenyl)-, 1-dimethylurea) - F- chlorophyll fluorescence measured at any time in the absence of a saturating flash - Fo- chlorophyll fluorescence with only the weak modulated measuring beam on - FM'- chlorophyll fluorescence during a saturating flash - FM- maximum chlorophyll fluorescence, measured in the presence of WL and FRL at the CO2-compensation point or in the presence of DCMU - FV- variable fluorescence (= FM'–F0) - FRL- supplemental illumination with far red light - MB- modulated measuring beam of the PAM fluorometer - MV- methyl viologen - PAM- pulse amplitude modulation - PFD- incident photon flux density - PS 1, 2- Photosystems 1 and 2 - QA- primary electron-accepting plastoquinione of PS 2 - qN- non-photochemical quenching of chlorophyll fluorescence - qp- photochemical quenching of chlorophyll fluorescence; rubisco-ribulose bisphosphate carboxylase/oxygenase - SF- saturating flash (600 ms duration) - WL- white light illumination  相似文献   

18.
Experiments were conducted to investigate the photosynthetic activity and thermostability of photosystem II (PSII) in elm seedling (Ulmus pumila) leaves from initiation to full expansion. During leaf development, photosynthesis, measured as CO2 fixation, increased gradually and reached a maximum value when leaves were fully developed. In parallel with the increase of carbon assimilation, chlorophyll content increased. The chlorophyll a fluorescence measurements showed that the maximum quantum yield of PSII primary photochemistry (φpo), the efficiency with which the energy of trapped excitons is converted into the electron transport beyond QA (Ψo) and the quantum yield of electron transport beyond QA (φEo) increased gradually. The low light experiments confirmed these results independently. When subjected to heat stress, young leaves exhibited progressively lower φpo and maximal fluorescence (Fm) values with considerably higher minimal fluorescence (Fo) than mature leaves, demonstrating that PSII in newly initiating leaves is more sensitive to heat stress. Further analysis revealed that PSII structure in newly initiating leaves showed a robust alteration under heat stress, which was reflected by the clear K phase in the OJIP curves. Therefore, we suggest that the enhanced thermostability of PSII in the case of leaf growth might be associated with an improvement of the stability of the oxygen-evolving complex (OEC) to heat stress during leaf development.  相似文献   

19.
Exposure to high light induced a quantitatively similar decrease in the rate of photosynthesis at limiting photon flux density (PFD) and of photosystem II (PSII) photochemical efficiency, FV/FM, in both green and blue-green algal lichens which were fully hydrated. Such depressions in the efficiency of photochemical energy conversion were generally reversible in green algal lichens but rather sustained in blue-green algal lichens. This greater susceptibility of blue-green algal lichens to sustained photoinhibition was not related to differences in the capacity to utilize light in photosynthesis, since the light-and CO2-saturated rates of photosynthetic O2 evolution were similar in the two groups. These reductions of PSII photochemical efficiency were, however, largely prevented in lichen thalli which were fully desiccated prior to exposure to high PFD. Thalli of green algal lichens which were allowed to desiccate during the exposure to high light exhibited similar recovery kinetics to those which were kept fully hydrated, whereas bluegreen algal lichens which became desiccated during a similar exposure exhibited greatly accelerated recovery compared to those which were kept fully hydrated. Thus, green algal lichens were able to recover from exposure to excessive PFDs when thalli were in either the hydrated or desiccated state during such an exposure, whereas in blue-green algal lichens the decrease in photochemical efficiency was reversible in thalli illuminated in the desiccated state but rather sustained subsequent to illumination of thalli in the hydrated state.Abbreviations and Symbols Fo yield of instantaneous fluorescence - FM maximum yield of fluorescence induced by pulses of saturating light - FV variable yield of fluorescence - PFD photon flux density (400–700 nm) - PSII photosystem II This work was supported by the Deutsche Forschungsgeneinschaft (Forscherguppe Ökophysiologic and Sonderforschungsbereich 251 of the University of Würzburg) and the Fonds der Chemischen Industrie. W.W.A. gratefully acknowledges the support of a fellowship from the Alexander von Humboldt Foundation. We thank Professor T.G.A. Green for identifying and supplying all of the New Zealand lichen material and Professor F.-C. Czygan for advice concerning the chlorophyll analyses which were performed by Johanna Leisner.  相似文献   

20.
The relationships between photoinhibition and photoprotection in high and low-light-grown Ulva were examined by a combination of chlorophyll-fluorescence-monitoring techniques. Tissues were exposed to a computer-controlled sequence of 5-min exposures to red light, followed by 5-min darkness, with stepwise increases in photon flux. Coefficients of chlorophyll fluorescence quenching (1?qP and NPQ) were calculated following a saturating pulse of white light near the end of each 5-min light treatment. Dark-adapted chlorophyll fluorescence parameters (F0 and FV/FM) were calculated from a saturating pulse at the end of each 5-min dark period. Low-light-grown Ulva showed consistently higher 1?qP, i.e. higher reduction status of Q (high primary acceptor of photosystem II), and lower capacity for nonphotochemical quenching (NPQ) at saturating light than did high-light-grown plants. Consequently, low-light plants rapidly displayed photoinhibitory damage (increased F0) at light saturation in seawater. Removal of dissolved inorganic carbon from seawater also led to photoinhibitory damage of high-light-grown Ulva at light saturation, and addition of saturating amounts of dissolved inorganic carbon protected low-light-grown plants against photoinhibitory damage. A large part of NPQ was abolished by treatment with 3 mM dithiothreitol and the processes so inhibited were evidently photoprotective, because dithiothreitol treatment accelerated photoinhibitory damage in both low- and high-light-grown Ulva. The extent of photoinhibitory damage in Ulva was exacerbated by treatment with chloramphenicol (1 mM) without much effect on chlorophyll-quenching parameters, evidently because this inhibitor of chloroplast protein synthesis reduced the rate of repair processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号