首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporin (AQP) functions as a water-conducting pore. Mercury inhibits the water permeation through AQP. Although site-directed mutagenesis has shown that mercury binds to Cys189 during the inhibition process, it is not fully understood how this inhibits the water permeation through AQP1. We carried out 40 ns molecular dynamics simulations of bovine AQP1 tetramer with mercury (Hg-AQP1) or without mercury (Free AQP1). In Hg-AQP1, Cys191 (Cys189 in human AQP1) is converted to Cys-SHg+ in each monomer. During each last 10 ns, we observed water permeation events occurred 23 times in Free AQP1 and never in Hg-AQP1. Mercury binding did not influence the whole structure, but did induce a collapse in the orientation of several residues at the ar/R region. In Free AQP1, backbone oxygen atoms of Gly190, Cys191, and Gly192 lined, and were oriented to, the surface of the water pore channel. In Hg-AQP1, however, the SHg+ of Cys191-SHg+ was oriented toward the outside of the water pore. As a result, the backbone oxygen atoms of Gly190, Cys191, and Gly192 became disorganized and the ar/R region collapsed, thereby obstructing the permeation of water. We suggest that mercury disrupts the water pore of AQP1 through local conformational changes in the ar/R region.  相似文献   

2.

Background

Diuretic agents are widely used on the treatment of water retention related diseases, among which acetazolamide (AZA) acts originally as a carbonic anhydrase (CA) inhibitor. Aquaporin-1 (AQP1) being located in renal proximal tubules is required for urine concentration. Previously our lab has reported AZA putatively modulated AQP1. Aim of this study is to testify our hypothesis that regulating AQP1 may mediate diuretic effect of AZA.

Methodology/Principal Findings

For in vivo study, we utilized Sprague Dawley rats, as well as AQP1 knock-out (AQP1−/−) mice to examine urine volume, and human kidney-2 (HK-2) cell line was used for in vitro mechanism study. In our present study we found that AZA decreased CAs activity initially but the activity gradually recovered. Contrarily, diuretic effect was consistently significant. AQP1 protein expression was significantly decreased on day 7 and 14. By utilizing AQP1−/− mice, we found diuretic effect of AZA was cancelled on day 14, while urine volume continuously increased in wild-type mice. Surface plasmon resonance (SPR) results indicated AQP1 was physiologically bound by myosin heavy chain (MHC), immunoprecipitation and immunofluorescence results confirmed this protein interaction. In vitro study results proved AZA facilitated AQP1 translocation onto cell membrane by promoting interaction with MHC, dependent on ERK/ myosin light chain kinase (MLCK) pathway activation. MHC inhibitor BDM and ERK inhibitor U0126 both abolished above effect of AZA. Eventually AZA induced AQP1 ubiquitination, while proteasome inhibitor MG132 reversed AZA''s down-regulating effect upon AQP1.

Conclusions/Significance

Our results identified AZA exerted diuretic effect through an innovative mechanism by regulating AQP1 and verified its inhibitory mechanism was via promoting MHC-dependent translocation onto cell membrane and then ubiquitin mediated degradation, implicating a novel mechanism and target for diuretic agent discovering.  相似文献   

3.
The Kedem-Katchalsky (KK) equations are often used to obtain information about the osmotic properties and conductance of channels to water. Using human red cell membranes, in which the osmotic flow is dominated by Aquaporin-1, we show here that compared to NaCl the reflexion coefficient of the channel for methylurea, when corrected for solute volume exchange and for the water permeability of the lipid membrane, is 0.54. The channels are impermeable to these two solutes which would seem to rule out flow interaction and require a reflexion coefficient close to 1.0 for both. Thus, two solutes can give very different osmotic flow rates through a semi-permeable pore, a result at variance with both classical theory and the KK formulation. The use of KK equations to analyze osmotic volume changes, which results in a single hybrid reflexion coefficient for each solute, may explain the discrepancy in the literature between such results and those where the equations have not been employed. Osmotic reflexion coefficients substantially different from 1.0 cannot be ascribed to the participation of other 'hidden' parallel aqueous channels consistently with known properties of the membrane. Furthermore, we show that this difference cannot be due to second-order effects, such as a solute-specific interaction with water in only part of the channel, because the osmosis is linear with driving force down to zero solute concentration, a finding which also rules out the involvement of unstirred-layer effects. Reflexion coefficients smaller than 1.0 do not necessitate water-solute flow interaction in permeable aqueous channels; rather, the osmotic behaviour of impermeable molecular-sized pores can be explained by differences in the fundamental nature of water flow in regions either accessible or inaccessible to solute, created by a varying cross-section of the channel.  相似文献   

4.
Aquaporin-1 (AQP1) is the main water channel responsible for water transport through many epithelia and endothelia. The latest evidence pointed toward an important role of this protein also in gas permeation, angiogenesis, cell proliferation and migration. In the present work we studied the expression of AQP1 by immunohistochemical staining of 92 lung biopsies from patients diagnosed with a pleuro-pulmonary tumor (71 lung and 21 pleural neoplasms). AQP1 expression was analyzed comparing the results among the different histological patterns and against 9 control cases (5 parenchyma and 4 healthy pleura). Clear staining of AQP1 was detected in 39 of the 92 tumors analyzed. In parenchyma, AQP1 was more frequently detected in primary lung adenocarcinomas (55%, P<0.001); in contrast, small cell carcinomas were the least AQP1 expressive tumors studied (93% of negative staining, P<0.05). Carcinomas analyzed in pleura (mesotheliomas and metastatic adenocarcinomas) also revealed strong expression of AQP1. High expression of this protein was detected in small capillaries in areas near or surrounding the tumor, and novel intense AQP1 immunostaining was detected over thicker alveolar walls in alveoli inside or next to the tumoral tissue regardless of the tumor type. An important role of AQP1 in tumor angiogenesis is sustained by the abundant expression of this protein in the endothelia of tumor capillaries. Further studies are necessary to elucidate the potential pathophysiological role of this protein in pleuro-pulmonary neoplasms.  相似文献   

5.
Although the water channel protein aquaporin-1 (AQP1) is widely observed outside the rat brain in continuous, but not fenestrated, vascular endothelia, it has not previously been observed in any endothelia within the normal rat brain and only to a limited extent in the human brain. In this immunohistochemical study of rat brain, AQP1 has also been found in microvessel endothelia, probably of the fenestrated type, in all circumventricular organs (except the subcommissural organ and the vascular organ of the lamina terminalis): in the median eminence, pineal, subfornical organ, area postrema and choroid plexus. The majority of microvessels in the median eminence, pineal and choroid plexus, known to be exclusively fenestrated, are shown to be AQP1-immunoreactive. In the subfornical organ and area postrema in which many, but not all, microvessels are fenestrated, not all microvessels are AQP1-immunoreactive. In the AQP1-immunoreactive microvessels, the AQP1 probably facilitates water movement between blood and interstitium as one component of the normal fluxes that occur in these specialised sensory and secretory areas. AQP1-immunoreactive endothelia have also been seen in a small population of blood vessels in the cerebral parenchyma outside the circumventricular organs, similar to other observations in human brain. The proposed development of AQP1 modulators to treat various brain pathologies in which AQP1 plays a deleterious role will necessitate further work to determine the effect of such modulators on the normal function of the circumventricular organs.  相似文献   

6.
Water permeabilities as well as other membrane parameters, such as exchange capacity, water content, and specific conductance, have been measured for two cation exchange membranes in the H form. The conductance of membrane with low water content was less than that of the membrane with high water content. These data have been discussed in the light of an existing theory and found inadequate to explain the results in a quantitative way. Water permeability of the membranes subject to mechanical pressure was found to be higher than their isotopic water permeability, according to expectation. These data have been examined from the standpoint of thermodynamic and kinetic theories of water flow in membranes and used to estimate the average size of membrane pores.  相似文献   

7.
The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both adipose and stromal vascular fractions. Moreover, AQP7 was the only aquaglyceroporin expressed in adipose tissue and in 3T3-L1 adipocytes. By overexpressing the human AQP7 in 3T3-L1 adipocytes it was possible to ascertain its role as a water and glycerol channel in a gain-of-function scenario. AQP7 expression had no effect in equilibrium cell volume but AQP7 loss of function correlated with higher triglyceride content. Furthermore it is also reported for the first time a negative correlation between water permeability and the cell non-osmotic volume supporting the observation that AQP7 depleted cells are more prone to lipid accumulation. Additionally, the strong positive correlation between the rates of water and glycerol transport highlights the role of AQP7 as both a water and a glycerol channel and reflects its expression levels in cells. In all, our results clearly document a direct involvement of AQP7 in water and glycerol transport, as well as in triglyceride content in adipocytes.  相似文献   

8.
Aquaporins (AQPs) are a family of channel proteins that allow water or very small solutes to pass, functioning in tissues where the rapid and regulated transport of fluid is necessary, such as the kidney, lung, and salivary glands. Aquaporin-5 (AQP5) has been demonstrated to localize on the luminal surface of the acinar cells of the salivary glands. In this paper, we investigated the expression and function of AQP5 in the secretory granules of the rat parotid gland. AQP5 was detected in the secretory granule membranes by immunoblot analysis. The immunoelectron microscopy experiments confirmed that AQP5 was to be found in the secretory granule membrane. Anti-AQP5 antibody evoked lysis of the secretory granules but anti-aquaporin-1 antibody did not and AQP1 was not detected in the secretory granule membranes by immunoblot analysis. When chloride ions were removed from the solution prepared for suspending secretory granules, the granule lysis induced by anti-AQP5 antibody was inhibited. Furthermore, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, an anion channel blocker, blocked the anti-AQP5 antibody-induced secretory granule lysis. These results suggest that AQP5 is, expressed in the parotid gland secretory granule membrane and is involved in osmoregulation in the secretory granules.  相似文献   

9.
10.
Membrane water transport is an essential event not only in the osmotic cell volume change but also in the subsequent cell volume regulation. Here we investigated the route of water transport involved in the regulatory volume decrease (RVD) that occurs after osmotic swelling in human epithelial Intestine 407 cells. The diffusion water permeability coefficient (Pd) measured by NMR under isotonic conditions was much smaller than the osmotic water permeability coefficient (Pf) measured under an osmotic gradient. Temperature dependence of Pf showed the Arrhenius activation energy (Ea) of a low value (1.6 kcal/mol). These results indicate an involvement of a facilitated diffusion mechanism in osmotic water transport. A mercurial water channel blocker (HgCl2) diminished the Pf value. A non-mercurial sulfhydryl reagent (MMTS) was also effective. These blockers of water channels suppressed the RVD. RT-PCR and immunocytochemistry demonstrated predominant expression of AQP3 water channel in this cell line. Downregulation of AQP3 expression induced by treatment with antisense oligodeoxynucleotides was found to suppress the RVD response. Thus, it is concluded that AQP3 water channels serve as an essential pathway for volume-regulatory water transport in, human epithelial cells.  相似文献   

11.
A metric of nanoparticle toxicity is the passive permeability rate through cellular membranes. To assess the influence of nanoparticle morphology on this process, the permeability of buckyball-sized molecules through a representative lipid bilayer was investigated by molecular-dynamics simulation. When C60 was compared with a prototypical opened C60 molecule and a representative combustion-generated particle, C68H29, the calculated free-energy profiles along the permeation coordinate revealed a sizable variation in form and depth. The orientation of the anisotropic molecules was determined by monitoring the principal axis corresponding to the largest moment of inertia, and free rotation was shown to be hindered in the bilayer interior. Diffusion constant values of the permeant molecules were calculated from a statistical average of seven to 10 trajectories at five locations along the permeation coordinate. A relatively minor variation of the values was observed in the bilayer interior; however, local resistance values spanned up to 24 orders of magnitude from the water layer to the bilayer center, due primarily to its exponential dependence on free energy. The permeability coefficient values calculated for the three similarly sized but structurally distinct nanoparticles showed a significant variance. The use of C60 to represent similarly sized carbonaceous nanoparticles for assessments of toxicity is questioned.  相似文献   

12.
13.
Permeation of Uncharged Organic Molecules and Water Through Tomato Roots   总被引:1,自引:0,他引:1  
Permeation of ethylene glycol, D-mannitol, L glucose, and raffinosethrough excised tomato roots was investigated. Solute transportfrom external solution to the xylem sap was determined at variousrates of exudate flow achieved in turn by application of differentpressures to the solution surrounding the roots. At an applied pressure of two bar, steady-state solute concentrationsexpressed as a percentage of external concentrations were, 52per cent for ethylene glycol, 3–4 per cent for mannitoland glucose, and I per cent for raffinose. Such relationshipsbetween the chemical structure of the solute and its concentrationin the xylem sap are similar to those demonstrated by otherworkers for solute permeation into single cells. Thus in thepresent experiments most of these solutes presumably flowedthrough at least one membrane before reaching the xylem. The data also indicate that the flow of water via wholly extracellularpathways was slight, at most, I per cent of the total flow reachingthe xylem via this route.  相似文献   

14.
15.
Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction.  相似文献   

16.
Aquaporin-1 (AQP1), a membrane water channel, is expressed in choroid plexus where it contributes to cerebrospinal fluid production. Here, we show that AQP1 is also expressed in the dorsal horn of the spinal cord and the trigeminal nucleus caudalis, regions that process pain information. Within the dorsal root and trigeminal sensory ganglia, AQP1 is concentrated in small diameter cell bodies, most of which give rise to unmyelinated C-fibers. To study the role of AQP1 in pain signaling, we compared acute pain responses in wild-type mice and in mice lacking AQP1. AQP1−/− mice had reduced responsiveness to thermal and capsaicin chemical stimuli, but not to mechanical stimuli or formalin. These results provide evidence for AQP1 expression in nociceptive neurons and suggest that AQP1 may play a role in pain signal transduction.  相似文献   

17.
The purpose of this study was to determine the temporal and spatial changes in the expression of AQP4 and AQP9 in the optic nerve after it is crushed. The left optic nerves of rats were either crushed (crushed group) or sham operated (sham group), and they were excised before, and at 1, 2, 4, 7, and 14 days later. Four optic nerves were pooled for each time point in both groups. The expression of AQP4 and AQP9 was determined by western blot analyses. Immunohistochemistry was used to determine the spatial expression of AQP4, AQP9, and GFAP in the optic nerve. Optic nerve edema was determined by measuring the water content in the optic nerve. The barrier function of the optic nerve vessels was determined by the extravasated Evans blue dye on days 7 and 14. The results showed that the expression of AQP4 was increased on day 1 but the level was significantly lower than that in the sham group on days 4 and 7 (P<0.05). In contrast, the expression of AQP9 gradually increased, and the level was significantly higher than that in the sham group on days 7 and 14 (P<0.05, Tukey-Kramer). The down-regulation of AQP4 was associated with crush-induced optic nerve edema, and the water content of the nerve was significantly increased by 4.3% in the crushed optic nerve from that of the untouched fellow nerve on day 7. The expression of AQP4 and GFAP was reduced at the crushed site where AQP4-negative and AQP9-positive astrocytes were present. The barrier function was impaired at the crushed site on days 7 and 14, restrictedly where AQP4-negative and AQP9-positive astrocytes were present. The presence of AQP9-positive astrocytes at the crushed site may counteract the metabolic damage but this change did not fully compensate for the barrier function defect.  相似文献   

18.
19.
Aquaporin-1, nothing but a water channel   总被引:5,自引:0,他引:5  
Aquaporin-1 (AQP1) is a membrane channel that allows rapid water movement driven by a transmembrane osmotic gradient. It was claimed to have a secondary function as a cyclic nucleotide-gated ion channel. However, upon reconstitution into planar bilayers, the ion channel exhibited a 10-fold lower single channel conductance than in Xenopus oocytes and a 100-fold lower open probability (<10(-6)) of doubtful physiological significance (Saparov, S. M., Kozono, D., Rothe, U., Agre, P., and Pohl, P. (2001) J. Biol. Chem. 276, 31515-31520). Investigating AQP1 expressed in human embryonic kidney cells, we now have shown that the discrepancy is not due to alterations of AQP1 properties upon reconstitution into bilayers but rather to regulatory processes of the oocyte expression system that may have been misinterpreted as AQP1 ion channel activity. As confirmed by laser scanning reflection microscopy, from 0.8 to 1.4 x 10(6) AQP1 copies/cell contributed to osmotic cell swelling. The proper plasma membrane localization was confirmed by observing the fluorescence of the N-terminal yellow fluorescent protein tag. Whole-cell patch clamp experiments of wild type or tagged AQP1-expressing cells revealed that neither cGMP nor cAMP mediated ion channel activity. The lack of significant CNG ion channel activity rules out a secondary role of AQP1 water channels in cellular signal transduction.  相似文献   

20.
水通道 AQP1 敲除小鼠肿瘤血管生成障碍及肿瘤生长减缓   总被引:8,自引:1,他引:8  
血管生成是肿瘤生长、浸润和转移的必要步骤. 肿瘤血管生成涉及瘤旁组织血管内皮细胞增殖、向肿瘤细胞团内迁移以及管腔形成,目前机理尚不完全清楚. 水通道 AQP1 在多种肿瘤血管内皮高表达,提示其可能参与肿瘤血管的生成过程. 应用 AQP1 敲除小鼠荷瘤实验证实了 AQP1 在黑色素瘤生长和血管新生中的作用. 结果表明,皮下接种的黑色素瘤在 AQP1 敲除小鼠的生长较之在野生型小鼠延迟近 30% (P<0.01). 免疫组化与肿 瘤病理形态学分析显示, AQP1 在野生型小鼠黑色素瘤血管内皮细胞上高表达,而在 AQP1 敲除小鼠黑色素瘤血管内皮细胞呈阴性表达. 在病理结构上,黑色素瘤细胞围绕血管分支呈岛状分布. 野生型小鼠黑色素瘤内血管管腔较细小,而 AQP1(-/-)小鼠黑色素瘤内血管床显著膨大. AQP1(-/-)小鼠肿瘤内平均微血管密度 (47/mm2) 较之 AQP1(+/+) 肿瘤 (142/mm2) 减少 67% (P<0.01). 围绕 AQP1(-/-) 肿瘤血管的肿瘤细胞岛周边坏死区域明显大于 AQP1(+/+)肿瘤. 上述结果提出确切证据表明, AQP1 缺失使肿瘤血管生成发生障碍,从而影响了肿瘤血液供应和肿瘤生长. AQP1参与肿瘤血管生成的机理值得深入研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号