首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The possibility that the formation of androstenedione by fetal calf adrenal cells in culture is linked to their decreased ability to form cortisol and corticosterone was investigated. Fetal calf adrenal cells metabolise radioactive adrostenedione to two major products which coelute on thin layer chromatography with 11 beta-hydroxyandrostenedione and 11 beta-hydroxytestosterone. When the cells are incubated with 11-deoxycortisol or 11-deoxycorticosterone in the presence of androstenedione there is a dose dependant inhibition of cortisol and corticosterone formation. Further studies with progesterone showed an accumulation of 11-deoxycortisol and 11-deoxycorticosterone in cells incubated simultaneously with androstenedione. The results demonstrate that exogenous androstenedione can have dramatic effects on steroidogenesis in the fetal calf adrenal and suggest that the accumulation of androstenedione in the medium of cultured andrenocortical cells is responsible, at least in part, for the decreased formation of cortisol and corticosterone.  相似文献   

2.
We examined the utilization of human low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol for steroid production in primary monolayer culture cells from adenomas of primary aldosteronism and Cushing's syndrome and an adrenal of nodular hyperplasia of Cushing's syndrome. We compared the data obtained with findings in the case of cultured normal human adrenocortical cells. In the presence of 10(-7) M adrenocorticotropin (ACTH), the addition of either LDL or HDL to the culture medium at a cholesterol concentration of 100 micrograms/ml led to a significant increase in the daily secretion rates of cortisol, dehydroepiandrosterone sulfate (DHEA-S) and aldosterone in the adenoma and nodular hyperplasia cells, as in the normal cells. Although LDL greatly increased the secretion of steroid hormones, no significant difference in steroid secretion following the treatments with LDL and HDL were observed in these cultured cells. The contribution of endogenous cholesterol to steroid production was also high, thereby indicating that the neoplastic transformation did not have untoward effects. Cells from adenomas of primary aldosteronism secreted not only aldosterone, but also cortisol and DHEA-S. The daily secretion rates of these steroids were markedly increased when ACTH was added to the medium. With prolonged exposure to ACTH, however, the rate of aldosterone secretion showed a gradual decrease with the incubation time. This decrease might be due to the impaired conversion of corticosterone to 18-hydroxycorticosterone. In case of adenomas in patients with Cushing's syndrome, the secretion of steroid hormones varied in quantity and quality, depending on the type of plasma cortisol response to the rapid ACTH test in vivo, thereby suggesting that the adrenocortical adenoma of Cushing's syndrome might be divided into two subtypes. These results indicate that human functioning adrenocortical adenoma cells utilize plasma lipoproteins as a source of cholesterol for steroidogenesis during the prolonged stimulation of steroid secretion.  相似文献   

3.
To determine the direct effect of prolactin on adrenal androgen secretion, the daily secretions of dehydroepiandrosterone sulfate (DHEA-S), dehydroepiandrosterone (DHEA), androstenedione and cortisol were determined in monolayer culture of bovine adrenal cells in the presence or absence of adrenocorticotropic hormone (ACTH) and/or prolactin. In the absence of ACTH ovine prolactin alone had no effect on steroid secretion during seven-day culture. Ovine prolactin, when administered in combination with ACTH, significantly potentiated the stimulatory effect of ACTH on DHEA-S and DHEA but not androstenedione secretion on the seventh day in culture. On the first day in culture prolactin showed no synergistic effect with ACTH on DHEA and DHEA-S secretion, although ACTH significantly increased DHEA and cortisol secretion. DHEA-S secretion increased as a function of prolactin concentration in the presence of ACTH. These results indicated that long-term treatment by ovine prolactin with ACTH caused the increase in adrenal androgen secretion from bovine adrenal cells. The site of action of prolactin was suggested to be the partial inhibition of adrenal 3 beta-hydroxysteroid dehydrogenase by the result of increases in DHEA-S and DHEA but not androstenedione secretion.  相似文献   

4.
The effects and action mechanisms of estradiol on aldosterone secretion in female rats were studied. Replacement of estradiol benzoate (EB) increased the levels of plasma estradiol and aldosterone in ovariectomized (Ovx) rats. The aldosterone release from zona glomerulosa (ZG) cells was higher in EB-treated rats than in oil-treated animals. EB treatment potentiated the responses of aldosterone release to adrenocorticotropic hormone (ACTH), forskolin (FSK), and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Administration of EB in vivo did not alter cAMP production in response to ACTH or FSK. Although angiotensin II (Ang II) increased aldosterone secretion by rat ZG cells, the stimulatory effect of Ang II on the release of aldosterone was not altered by EB treatment. The conversions of [3H]-deoxycorticosterone to [3H]-corticosterone and [3H]-corticosterone to [3H]-aldosterone in EB-treated groups were greater than those in the oil-treated group. These results suggest that estradiol increases aldosterone secretion in part through the mechanisms involving the activation of the post-cAMP pathway, 11beta-hydroxylase and aldosterone synthase activity.  相似文献   

5.
Results of previous studies indicated that insulin at levels comparable to those in humans during hyperinsulinemia decreased ACTH-stimulated cortisol and androstenedione secretion by bovine adrenal fasciculata-reticularis cells in primary culture. In the present studies this inhibitory action was examined further by comparing the effects of insulin on ACTH-stimulated corticosteroid secretion with its effects on 8-(4-chlorophenylthio)-cAMP (cpt-cAMP), forskolin- and [5val]angiotensin II (Ang II)-stimulated corticosteroid secretion. Effects on corticosteroid secretion were correlated with effects on cAMP accumulation and rates of cAMP production. Monolayers were incubated for 24 h in the absence or presence of each agonist alone or in combination with insulin. Insulin (1.7 x 10(-9) or 17.5 x 10(-9) M) caused about a 50% decrease in cortisol and androstenedione secretion in response to ACTH (10(-11) or 10(-8) M). Insulin also decreased ACTH-stimulated aldosterone secretion by cultured glomerulosa cells. Cpt-cAMP (10(-4) or 10(-3) M)-stimulated increases in cortisol and androstenedione secretion were inhibited by insulin, but to a lesser extent than those in response to ACTH. The inhibition of cpt-cAMP-stimulated steroid secretion was not related to increased degradation of the cyclic nucleotide. Increases in cortisol and androstenedione secretion caused by a submaximal concentration (10(-6) M) of forskolin were decreased 50-70% by insulin. In contrast, insulin failed to significantly affect cortisol or androstenedione secretion caused by a maximal concentration (10(-5) M) of forskolin. The secretory responses to Ang II (10(-8) M) were also unaffected by insulin. The effect of insulin to inhibit ACTH-stimulated steroid secretion was accompanied by a reduction in cAMP accumulation as well as an apparent inhibition of adenylate cyclase activation. These data indicate that the effect of insulin to attenuate ACTH-stimulated corticosteroid secretion results from both an inhibition of ACTH-stimulated adenylate cyclase activity and an antagonism of the intracellular actions of cAMP.  相似文献   

6.
Slices of an adreno-cortical adenoma which had been obtained at operation from an 11-year-old girl with clinical signs of virilism were incubated with each of the following steroids: [1,2-3H]progesterone, [4-14C]pregnenolone, [1,2-3H]testosterone, [4-14C]androstenedione and [7-3H]dehydroepiandrosterone, respectively. Isolation and identification of the free radioactive metabolites were achieved by gel column chromatography on Sephadex LH-20, thin-layer chromatography, radio gas chromatography and isotope dilution. After incubation of progesterone, the following metabolites were identified: 11beta-hydroxyprogesterone, 16alpha-hydroxyprogesterone, 17alpha-hydroxyprogesterone, 21-deoxycortisol, corticosterone and cortisol. Pregnenolone was metabolized to 17alpha-hydroxypregnenolone, progesterone, dehydroepiandrosterone, androstenedione and 11beta-hydroxyandrostenedione. When testosterone was used as substrate, 11beta-hydroxytestosterone, androstenedione and 11beta-hydroxyandrostenedione were found as metabolites, whereas androstenedione was metabolized to testosterone and 11beta-hydroxyandrostenedione. After incubation of dehydroepiandrosterone, only androstenedione and 11beta-hydroxyandrostenedione were isolated and identified. From these results, it appears that cortisol was formed in the adenoma tissue via 21-deoxycortisol and corticosterone. Delta4-3oxo steroids of the C19-series arose exclusively from pregnenolone via 17alpha-hydroxypregnenolone and dehydroepiandrosterone, and not from progesterone and 17alpha-hydroxyprogesterone. Calculated on the amounts of metabolites formed, the highest enzyme activities were those of the 11beta-hydroxylase and the 17alpha-hydroxylase. It is interesting to note that only traces of testosterone were detected after incubation of androstenedione, whereas testosterone yielded large amounts of androstenedione.  相似文献   

7.
A perifusion system using a plastic column into which isolated rat adrenal cells had been installed was attempted. After ACTH or cAMP was administered to the column, the corticosterone concentration in the eluate was determined. ACTH in 10(-13) and 10(-12) M did not promote corticosterone production, whereas 10(-11) and 10(-10) M showed a dose dependent production of corticosterone. By iterative infusion of 10(-11) or 10(-9) M of ACTH, very clear responses to restimulation of ACTH were noted. Following the administrations of 10(-3) or 10(-2) M of dibutyryl adenosine 3',5'-cyclic monophosphate (dbcAMP), the production of corticosterone increased dose-dependently. These results suggest that this perifusion system is effective for examining the effects of ACTH or cAMP on steroidogenesis of cells.  相似文献   

8.
The effects and mechanisms of aging on corticosterone secretion in zona fasciculata-reticularis (ZFR) cells of ovariectomized (Ovx) rats were studied. Young (3-month) and old (24-month) female rats were Ovx for 4 days before decapitation. ZFR cells were isolated and incubated with different hormones or reagents at 37 degrees C for 30 min. Aging increased the basal secretion of corticosterone both in vivo and in vitro. The adrenocorticotropin (ACTH)-, forskolin-, 3-isobutyl-l-methylxanthine (IBMX)-, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP)-, and ovine prolactin (oPRL)-stimulated release of corticosterone by ZFR cells was greater in old than in young Ovx rats. H89, an inhibitor of protein kinase A (PKA), decreased the production of corticosterone in ZFR cells from young but not old Ovx rats. Forskolin-, or IBMX-induced production of cAMP was greater in old than in young Ovx animals, which correlated with the increase of corticosterone production by aging. The activity of 11 beta-hydroxylase that converts deoxycorticosterone (DOC, 10(-9) or 10(-8) M) to corticosterone in rat ZFR cells was decreased by age. However, the corticosterone production in response to high dose of DOC (10(-7) M) was indifferent between young and old groups. These results suggest that aging increases corticosterone production in Ovx rats via a mechanism in part associated with an increase of adenylyl cyclase activity and a decrease of phosphodiesterase activity, and then an increase of the generation of cAMP, but not related to either PKA activity or 11 beta-hydroxylase.  相似文献   

9.
Results of previous clinical studies suggested counter regulatory actions between insulin and DHEA(S). The present studies were performed using primary monolayer cultures of bovine fasciculata-reticularis cells to test the hypothesis that insulin directly affects adrenal androgen secretion. Although having no independent effect, insulin exhibited complex time- and concentration-specific actions on ACTH-stimulated secretion of both C21 (cortisol) and C19 (androstenedione) corticosteroids. In the presence of low concentrations (0.05-0.1 nM) of ACTH, cortisol secretion during a 2 h incubation was about 2-fold greater in the presence than in the absence of insulin (0.01-100 ng/ml). In the presence of a maximal concentration (10 nM) of ACTH, on the other hand, cortisol secretion was not affected by insulin at concentrations less than or equal to 0.1 ng/ml, but was decreased at higher insulin concentrations. ACTH-stimulated androstenedione secretion was not significantly affected by insulin during a short-term (2 h) incubation. During a prolonged (24 h) incubation, insulin produced a concentration-dependent inhibition of ACTH-stimulated cortisol secretion. At an insulin concentration of 100 ng/ml, ACTH (10 nM)-stimulated cortisol secretion declined to a level only 30% of that produced by ACTH alone. In contrast, insulin exhibited biphasic effects on the secretion of androstenedione by cells maintained in the presence of ACTH for 24 h; an effect that was most dramatic in the presence of a maximal concentration of ACTH. At an insulin concentration of 0.1 ng/ml, androstenedione secretion by cells maintained in the presence of 10 nM ACTH was increased approximately 2.5-fold. At higher concentrations of insulin, ACTH-stimulated androstenedione secretion was inhibited to an extent comparable to that in cortisol secretion. The effects of insulin on ACTH-stimulated cortisol and androstenedione secretion could not be accounted for by changes in steroid degradation or a loss in 11 beta-hydroxylase activity. These results indicate that insulin interacts with ACTH to modulate the secretion of both C21 and C19 corticosteroids and that physiological concentrations (less than or equal to 1 ng/ml) of insulin may have a long-term effect to enhance selectively adrenal androgen secretion. These data are consistent with a servo mechanism between insulin and DHEA(S) in vivo and indicate that the correlations observed clinically result, at least in part, from a direct action of insulin to modulate the rate of adrenal androgen production.  相似文献   

10.
In humans, the onset of adrenache has been found to occur with the appearance of the zona reticularis, the inner zone of the adrenal cortex. Since an increase in the volume of adrenal cortex during maturation in the guinea pig has been associated with the growth of the zona reticularis, we were interested in investigating the changes in adrenal steroidogenesis during maturation in this species. In addition, the effect of androgens on adrenal steroidogenesis was studied. We demonstrated that between 1 and 10 weeks of age, a period of maximal growth of the adrenals in the guinea pig, there is a decrease in the concentrations of adrenal pregnenolone, cortisol, dehydroepiandrosterone, testosterone, androstenedione, and 11 beta-hydroxyandrostenedione, suggesting lower steroid production by the guinea pig adrenals. In plasma, we observed that the concentration of 11 beta-hydroxyandrostenedione (the sole C19 steroid present after castration) remained unchanged during maturation, while cortisol and corticosterone were lower between 1 and 4 weeks of age. Although castration as well as the administration of the antiandrogen flutamide had no effect on adrenal steroidogenesis, dihydrotestosterone caused an inhibition of cortisol and corticosterone levels in the adrenals while the concentrations of progestins (namely, pregnenolone, 17-hydroxypregnenolone, progesterone, and 17-hydroxyprogesterone) tended to increase in the adrenals, thus suggesting that dihydrotestosterone induces a blockade in the steroidogenic pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
P-815 mouse mastocytoma cells express the K isozyme of pyruvate kinase and the specific activity of this enzyme is increased in response to N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate, 8-bromoadenosine 3':5'-cyclic monophosphate, cholera toxin, and epinephrine, all of which also elevate the intracellular concentration of adenosine 3':5'-cyclic monophosphate. Prostaglandin F2 alpha also increases the cellular activity of this enzyme, but does not increase the adenosine 3':5'-cyclic monophosphate levels. Under all these conditions, the increase in enzymatic activity is accompanied by an equivalent increase in the pyruvate kinase protein level. However, neither the rate of enzyme synthesis nor the level of pyruvate kinase mRNA is elevated by N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate. On the other hand, it does increase the enzyme's half-life. In contrast, prostaglandin F2 alpha increases the rate of synthesis and the level of pyruvate kinase K mRNA, but has no influence on the rate of degradation. Therefore, these cells have two mechanisms which increase pyruvate kinase K levels. One operates via an increase in cAMP level and results in a decrease in the rate of degradation, whereas the other minimizes an upsurge in cAMP levels but still increases pyruvate kinase K activity by increasing its rate of synthesis.  相似文献   

13.
Fetal adrenal tissue has been reported to lose its in vivo secretory pattern by virtue of a loss of fetal zone cells after the first week in culture. Consequently, we studied the steroidogenic capacity and the responsiveness to ACTH of human fetal adrenal tissue during the first week in organ culture. The culture medium was removed daily and assayed for cortisol and dehydroisoandrosterone sulfate (DS). First, as the concentration of ACTH in the medium was increased from 0 to 1 micrograms/ml steroid secretion increased. When tissue fragments were maintained in the absence of ACTH for 3 to 4 days, there was a striking increase in steroid secretion upon addition of ACTH to the medium, with larger rates of secretion of cortisol than DS being observed. Second, the steroidogenic capacity of the separate zones of the fetal adrenal gland was assessed. Tissue from the fetal zone secreted large amounts of DS and small amounts of cortisol, whereas neocortex tissue secreted similar quantities of DS and cortisol. Third, fetal zone tissue was maintained the absence of ACTH for 4 days and thereafter ACTH was added to the media for an additional 6 days. In this experiment, there was a marked increase in DS secretion rate after the addition of ACTH and a smaller increase in cortisol secretion.  相似文献   

14.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

15.
OBJECTIVE: To evaluate adrenal steroid hormone secretion in response to corticotropin-releasing factor (CRF) or to adrenocorticotropin hormone in women with hypothalamic amenorrhea. DESIGN: Controlled clinical study. SETTING: Department of Reproductive Medicine and Child Development, Section of Gynecology and Obstetrics, University of Pisa, Italy. PATIENT(S): Fifteen women with hypothalamic amenorrhea were enrolled in the study. Eight normal cycling women were used as control group. INTERVENTION(S): Blood samples were collected before and after an injection of ovine CRF (0.1 microg/kg iv bolus) or after synthetic ACTH (0.25 mg iv). MAIN OUTCOME MEASURE(S): Plasma levels of ACTH, 17-hydroxypregnenolone (17OHPe), progesterone (P), dehydroepiandrosterone (DHEA), 17-hydroxyprogesterone (17OHP), cortisol (F), 11-deoxycortisol (S) and androstenedione (A). RESULT(S): Basal plasma concentrations of ACTH, cortisol, 11-deoxycortisol, DHEA and 17OHPe were significantly higher in patients than in controls, whereas plasma levels of progesterone and 17-OHP were significantly lower in patients than in controls. In amenorrheic women the ratio of 17-OHPe/DHEA, of 17-OHPe/17-OHP and of 11-deoxycortisol/cortisol were significantly higher than in controls, while a significant reduction in the ratio of 17-OHP/androstenedione, of 17-OHP/11-deoxycortisol was obtained. In response to corticotropin-releasing factor test, plasma levels of ACTH, cortisol, 17-OHP, 11-deoxycortisol, DHEA and androstenedione were significantly lower in patients than in controls. In response to adrenocorticotropin hormone, plasma levels of 17-OHP, androstenedione and androstenedione/cortisol were significantly higher in patients than in controls. CONCLUSIONS: Patients suffering for hypothalamic amenorrhea showed an increased activation of hypothalamus-pituitary-adrenal (HPA) axis, as shown by the higher basal levels and by augmented adrenal hormone response to corticotropin-releasing factor administration. These data suggest a possible derangement of adrenal androgen enzymatic pathway.  相似文献   

16.
In a previous study, we reported the presence of 11 beta-hydroxyandrostenedione and 11 beta-hydroxytestosterone in testicular vein blood from mature male pigs. Since C19 steroids with an oxygen function at C11 have not been recorded as products of steroid biosynthesis in normal mammalian testes, we have examined their possible production in purified preparations of porcine Leydig cells. Both androstenedione and cortisol were added as substrates in studies using cell incubations of Leydig cells from mature boars (greater than 8 months old). Steroids were recovered from media by solid-phase extraction and separated by reversed-phase high performance liquid chromatography. Peaks corresponding to retention times of authentic standard steroids were seen for both 11 beta-hydroxyandrostenedione and 11 beta-hydroxytestosterone from each substrate. Generally, lesser amounts of C19 11-oxosteroids were noted also. Definitive confirmation was made by gas chromatography - mass spectrometry for 11 beta-hydroxyandrostenedione in the media.  相似文献   

17.
Acetylcholine, released from splanchnic nerve terminals innervating adrenal chromaffin cells, is known to increase synthesis of adrenal tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. The neuropeptide substance P is also present in the splanchnic nerve innervating the adrenal medulla, and this study examined whether substance P has any long-term effects on tyrosine hydroxylase activity and catecholamine levels in cultures of adult bovine adrenal chromaffin cells. When cultures were incubated for 3 days with substance P and carbachol, a cholinergic agonist, substance P (10(-6) M, and greater) completely inhibited the increase in tyrosine hydroxylase activity normally induced by carbachol. Long-term stimulation with carbachol also depleted endogenous catecholamines from the cells and substance P prevented this carbachol-induced depletion of catecholamine content. Substance P by itself, in the absence of carbachol, had only a slight effect on tyrosine hydroxylase activity. 8-Bromoadenosine 3':5'-cyclic monophosphate, an analogue of adenosine 3':5'-cyclic monophosphate, also increases tyrosine hydroxylase activity in chromaffin cells; however, substance P had no effect on the increase in tyrosine hydroxylase activity induced by this analogue. These results indicate that substance P's effects are relatively specific for the carbachol-induced increased in tyrosine hydroxylase activity and that the primary site of action of substance P is not a site common to the mechanism of tyrosine hydroxylase induction by carbachol and 8-bromoadenosine 3':5'-cyclic monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previous studies have shown that vasopressin stimulates the mitotic activity in adrenal zona glomerulosa cells in intact as well as in hypophysectomized rats. (Payet and Isler, Cell and Tissue Res. 172, 1976; Payet and Lehoux, J. steroid Biochem. 12, 1980). We now report that this effect is direct and specific, since vasopressin stimulates the mitotic activity of rat adrenal zona glomerulosa cells in primary cultures. These cells were prepared by dissociation with collagenase in the culture medium MEM-d-Valine. Isolated cells were placed in 3.5 diameter petri dishes in MEM-d-valine medium containing 15% fetal calf serum and antibiotics for two days and 5% fetal calf serum for subsequent cultures. The medium was changed at 24 hr intervals. The hormones were added 3 days after the culture was started. The mitogenic effect of vasopressin was found to be dependent both on time and hormone concentrations. Vasopressin (10(-11) M) stimulated thymidine incorporation 4.8 +/- 0.6-fold after 2 days of treatment and 5.3 +/- 1.6-fold after 8 days. When ACTH (10(-11) M) was added together with vasopressin (10(-11) M) the mitogenic effect was enhanced at 6.5 +/- 1.9-fold after 2 days and 12.9 +/- 6.9-fold after 8 days of treatment. The aldosterone and corticosterone outputs were also stimulated by the combined presence of vasopressin and ACTH in the incubation medium; a maximal effect was observed between 6 and 8 days of treatment. Vasopressin (10(-11) M) + ACTH (10(-11) M) stimulated the aldosterone output 7-fold and that of corticosterone by 18-fold. When added alone, vasopressin, as well as ACTH alone had only a small effect on the aldosterone output. However, ACTH alone stimulated the corticosterone output 10-fold. In conclusion, vasopressin is an important and specific growth factor of the adrenal zona glomerulosa cells. In addition, together with ACTH vasopressin stimulates the aldosterone and corticosterone output both in vivo and in vitro in primary cell cultures.  相似文献   

19.
During capacitation of mammalian sperm intracellular [Ca(2+)] and cyclic nucleotides increase, suggesting that CNG channels play a role in the physiology of sperm. Here we study the effect of capacitation, 8Br-cAMP (8-bromoadenosine 3',5'-cyclic monophosphate) and 8Br-cGMP (8-bromoguanosine 3',5'-cyclic monophosphate) on the macroscopic ionic currents of mouse sperm, finding the existence of different populations of sperm, in terms of the recorded current and its response to cyclic nucleotides. Our results show that capacitation and cyclic nucleotides increase the ionic current, having a differential sensitivity to cGMP (cyclic guanosine monophosphate) and cAMP (cyclic adenosine monophosphate). Using a specific inhibitor we determine the contribution of CNG channels to macroscopic current and capacitation.  相似文献   

20.
The role of prolactin (PRL) in the male is not fully defined. The aim of this study was to investigate the function and mechanism of PRL on the production of corticosterone by zona fasciculata-reticularis (ZFR) cells in vitro. The ZFR cells were obtained from male rats under normal, hyperprolactinemic, or hypoprolactinemic situation. PRL stimulated the corticosterone release in a dose-dependent pattern in the ZFR cells from normal male rats. The cellular adenosine 3'-5'-cyclic monophosphate (cAMP) concentration positively correlated with PRL concentration in the presence of forskolin or 3-isobutyl-1-methylxanthine (IBMX). PRL enhanced the stimulatory effects of cAMP mimetic reagents, i.e., forskolin, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), and IBMX on the release of corticosterone. The adenylate cyclase inhibitor (SQ22536) inhibited the corticosterone release in spite of presence of PRL. Nifedipine (L-type calcium channel blocker) did not inhibit corticosterone release. The hyperprolactinemic condition was actualized by transplantation of donor rat anterior pituitary glands (APs) under kidney capsule. By comparison with the cerebral cortex (CX)-grafted group, AP-graft resulted in an increased release of corticosterone, 3beta-hydroxysteriod dehydrogenase (HSD) activity and cAMP production by ZFR cells. Acute hypoprolactinemic status was induced by bromocriptine for 2 days. The results showed the productions of corticosterone were lower in hypoprolactinemic group than in control group, which were persistent along with different ACTH concentrations. These results suggest that PRL increase the release of corticosterone by ZFR cells via cAMP cascades and 3beta-HSD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号