首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen free radicals have been hypothesized to play an important role in the aging process. To investigate the correlation between the oxidative stress and aging, we have determined the levels of oxidative protein damage and lipid peroxidation in the brain and liver, and activities of antioxidant enzymes in the brain, liver, heart, kidney, and serum from the Fisher 344 rats at ages of 1, 6, 12, 18, and 24 months. The results showed that the level of oxidative protein damage (measured as carbonyl content) in the brain and liver was significantly higher in older animals than in young animals. No statistical difference was observed in the lipid peroxidation of the liver and brain between young and old animals. The activities of antioxidant enzymes in most tissues displayed an age-dependent decline. Superoxide dismutases in the heart, kidney, and serum, glutathione peroxidase activities in the serum and kidney, and catalase activities in the brain, liver, and kidney, significantly decreased during aging. Cytochrome c oxidase, an enzyme involved in electron transport in mitochondria, initially increased, but subsequently decreased in the aged brain, whereas no significant alteration was observed in the liver mitochondrial antioxidant enzymes. The present studies suggest that the accumulation of oxidized proteins during aging is most likely to be linked with an age-related decline of antioxidant enzyme activities, whereas lipid peroxidation is less sensitive to predict the aging process.  相似文献   

2.
Effect of garlic supplementation on blood antioxidant status, lipid peroxidation, and coronary plaque formation process was investigated in oxidized oil-fed rabbits. Eighteen adult male mixed European rabbits were given a balanced diet (21 g% protein, 34 g% fat, 45 g% carbohydrate), which contained isocaloristic addition of nonoxidized or oxidized rapeseed oil in the presence and absence of garlic. The experiment lasted 24 weeks. At the beginning and every 6 weeks, rabbits were weighed, and blood was taken. To evaluate the antioxidant status of the rabbits, erythrocytes malondialdehyde (MDA) concentration, total superoxide dismutase (t-SOD), and glutathione peroxidase (GPX) activations were determined. After the experiment was completed, aortas were dissected for histological examinations. Changes in the contents of the above parameters and histological examinations showed that oxidized rapeseed, oil administered to rabbits, caused the development of atherosclerotic changes and disturbed antioxidant status. The addition of garlic in such diets inhibited atherosclerotic changes in the aorta wall, and it is related to the homeostatic activity of antioxidative enzymes and lipid peroxidation.  相似文献   

3.
超高产杂交稻剑叶衰老过程中的抗氧化性的变化   总被引:9,自引:0,他引:9  
与对照种汕优63相比,超高产水稻组合培矮64S/E32的剑叶在生长后期具有更高的抗氧化酶(抗坏血酸过氧化物酶APX和谷胱甘肽还原酶GR)活性和小分子抗氧化剂(抗坏血酸Vc、总Vc、还原型谷胱甘肽GSH和β-胡萝卜素)含量,高的清除有机自由基DPPH·能力,更低的膜脂过氧化产物丙二醛含量。这表明培矮64S/E32剑叶在生长后期有强的抗氧化性,这种强抗氧化性与超高产水稻在结实后期剑叶中较慢的叶绿素和蛋白质降解速度相一致。  相似文献   

4.
酶促和非酶促抗氧化系统在玉米胚脱水耐性获得中的作用   总被引:2,自引:0,他引:2  
以发育中的玉米胚为材料,研究了玉米胚脱水耐性的发育变化及其与抗氧化系统之间的关系。结果表明,授粉后18d的胚获得萌发能力,但不耐脱水;授粉后36d的胚开始获得耐脱水能力,并随着发育逐渐增加。随着发育,胚的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性逐渐降低,过氧化氢酶(CAT)活性逐渐增加。授粉后16~22d的玉米胚中检测不到抗坏血酸,24d后胚中抗坏血酸的含量显著增加;还原性谷胱甘肽含量在整个发育过程中逐渐增加。脱水胚的SOD、APX和DHAR的活性比对照(未脱水)胚低,而GR和CAT活性在发育早期比对照胚低,在发育中、后期高于对照胚。脱水胚的抗坏血酸和还原性谷胱甘肽含量明显低于对照胚。胚中丙二醛的含量随着发育逐渐下降,脱水胚的丙二醛含量显著高于对照。这些结果说明CAT活性和谷胱甘肽含量的增加以及脂质过氧化产物丙二醛含量的下降与玉米胚脱水耐性的获得密切相关。  相似文献   

5.
The aim of this study was to investigate the influences of different stress models on the antioxidant status and lipid peroxidation (LPO) in erythrocytes of rats. Swiss-Albino female rats (3 months old) were used in this study. Rats were randomly divided into the following four groups; control group (C), cold stress group (CS), immobilization stress group (IS) and cold+immobilization stress group (CS+IS). Control group was kept in an animal laboratory (22 &#45 2°C). Rats in CS group were placed in cold room (5°C) for 15 min/day for 15 days. Rats in IS group were immobilized for 180 min/day for 15 days. Rats in CS+IS group were exposed to both cold and immobilization stresses for 15 days. At the end of experimental periods, the activities of glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and concentration of reduced glutathione (GSH) were measured. LPO was determined by measuring the contents of thiobarbituric acid-reactive substances (TBARS). Cu,Zn-SOD activity and TBARS concentration were increased after cold and immobilization stresses, but CAT and GSH-Px activities and GSH levels were decreased. Immobilization stress decreased the activity of G-6-PD. The activities of G-6-PD, CAT and GSH-Px, and the level of GSH were lower in CS+IS group than in the control group. Cu,Zn-SOD activity and TBARS levels were increased in CS+IS group when compared with the control group. From these findings, three stress models are thought to cause oxidative stress.  相似文献   

6.
Abstract: Excessive free radical formation or antioxidant enzyme deficiency can result in oxidative stress, a mechanism proposed in the toxicity of MPTP and in the etiology of Parkinson's disease (PD). However, it is unclear if altered antioxidant enzyme activity is sufficient to increase lipid peroxidation in PD. We therefore investigated if MPTP can alter the activity of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) and the level of lipid peroxidation. l -Deprenyl, prior to MPTP administration, is used to inhibit MPP+ formation and its subsequent effect on antioxidant enzymes. MPTP induced a threefold increase in SOD activity in the striatum of C57BL/6 mice. No parallel increase in GSH-PX or CAT activities was observed, while striatal lipid peroxidation decreased. At the level of the substantia nigra (SN), even though increases in CAT activity and reduction in SOD and GSH-PX activities were detected, lipid peroxidation was not altered. Interestingly, l -deprenyl induced similar changes in antioxidant enzymes and lipid peroxidation levels, as did MPTP. Taken together, these results suggest that an alteration in SOD activity, without compensatory increases in CAT or GSH-PX activities, is not sufficient to induce lipid peroxidation.  相似文献   

7.
Chattonella marina, a red tide or harmful algal bloom species, has caused mass fish kills and serious economic loss worldwide, and yet its toxic actions remain highly controversial. Previous studies have shown that this species is able to produce reactive oxygen species (ROS), and therefore postulated that ROS are the causative agents of fish kills. The present study investigates antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to C. marina, compared with responses exposed to equivalent and higher levels of ROS exposure. Even though C. marina can produce a high level of ROS, gills and erythrocytes of sea bream exposed to C. marina for 1 to 6 h showed neither significant induction of antioxidant enzymes nor lipid peroxidation. Antioxidant responses and oxidative damage did not occur as fish mortality began to occur, yet could be induced upon exposure to artificially supplied ROS levels an order of magnitude higher. The result of this study implies that ROS produced by C. marina is not the principal cause of fish kills.  相似文献   

8.
In this work, the effect of chronic intraperitoneal administration of chlorpromazine (5 and 10 mg/kg) on the antioxidant enzymes superoxide dismutase (SOD), catalase (CA), glutathione reductase (GR), and glutathione peroxidase (GP); lipid peroxidation; and lipofuscin accumulation in the brains of rats ages 6, 9, and 12 months was studied. Chlorpromazine increased the activities of SOD, GR, and GP in particulate fraction from cerebrum, cerebellum, and brain stem in a dose-dependent manner. While GR and SOD associated with soluble fraction increased, GP associated with soluble fraction was not affected. CA did not change after chlorpromazine administration in any regions of the brain of rats from all age groups. Chlorpromazine, thus, had a somewhat different action on antioxidant enzymes in different subcellular fractions. Chlorpromazine inhibited lipid peroxidation, both in vivo and in vitro, and it also inhibited accumulation of lipid peroxidation fluorescent products (lipofuscin), which was studied histochemically and biochemically as well. The data indicate that chlorpromazine inhibition of lipid peroxidation and of accumulation of lipofuscin can result from elevation of the activity of brain antioxidant enzymes.  相似文献   

9.
The efficiencies of sinapic acid and its derivatives syringic acid, syringaldehyde, three sinapoyl esters (ethyl, propyl, butyl sinapates), 4-vinylsyringol and sinapine were investigated for prevention of lipid peroxidation in correlation with their interactions with model lipid membrane systems. Significant antioxidant activities of propyl and butyl sinapates were seen by fluorimetric assay in phosphatidylcholine liposomes as model membrane using C11-BODIPY581/591 lipophilic fluorescent probe. The sinapic acid esters also had the highest impact on membrane structural properties, as observed by differential scanning calorimetry and fluorescence polarisation measurements. The greatest protection of phospholipids from peroxidation by these esters correlated well with their polarity and insertion into the lipid bilayer.  相似文献   

10.
The effects of Echis pyramidum venom (EPV) (0.25, 0.50, and 1.00 mg/kg) on activities of superoxide dismutase (SOD) and catalase (CAT) and levels of thiobarbituric acid reactive substances (TBARS) and total thiols (T‐SH) in liver and kidneys of rats were investigated. EPV significantly and dose dependently decreased the activities of SOD and CAT in livers. Although the kidney SOD and CAT activities were not affected by low and medium doses of EPV, the high dose significantly reduced the activities of these enzymes. Liver and kidney TBARS levels were not affected by the low and medium doses of EPV, whereas the high dose significantly increased the TBARS after 6 h postdosing. There was a significant depletion of T‐SH in liver and kidneys of rats exposed to a high dose of EPV. The acute phase oxidative stress due to an EPV injection points toward the importance of an early antioxidant therapy for the management of snake bites.  相似文献   

11.
研究了脱水速率对木奶果种子脱水敏感性和抗氧化酶活性的影响。木奶果种子初始含水量高达1.72gH2O·g^-1DW,萌发率为86.67%。含水量降至0.90gH2O·g^-1DW左右时,慢速脱水种子的萌发率为97.78%,而快速脱水的种子萌发率仅为64.44%。快速脱水至含水量为0.76gH2O·g^-1DW时萌发率为21.67%,而慢速脱水至0.68gH2O·g^-1DW时,萌发率仍高达55.56%。确定了木奶果种子是对慢速脱水耐受性更高的顽拗性种子。在种子脱水过程中,相对电解质渗透速率和脂质过氧化产物(TBARs)都呈升高趋势,但慢速脱水后的种子,其TBARs升高的速率较快速脱水的慢。快速脱水的种子中超氧化岐化酶(SOD)、脱氢抗坏血酸还原酶(DHAR)和抗坏血酸过氧化物酶(APX)的活性较慢速脱水的高,而过氧化氢酶(CAT)活性较慢速脱水的低,未检测出谷胱甘肽还原酶(GR)的活性。这些结果表明,在木奶果种子脱水耐性获得过程中过氧化氢酶比其他抗氧化酶作用更大。  相似文献   

12.
The effect of temperature on Cyprinus carpio spermatozoa in vitro was investigated with spermatozoa activated at 4, 14, and 24 °C. At 30 s post-activation, motility rate was significantly higher at 4 °C compared to 14 and 24 °C, whereas highest swimming velocity was observed at 14 °C. The thiobarbituric acid-reactive substance (TBARS) content was significantly higher at 14 °C and 24 °C than at 4 °C in motile spermatozoa. No significant differences in catalase and superoxide dismutase activity relative to temperature were observed. This study provides new information regarding effect of temperature on lipid peroxidation intensity and spermatozoon motility parameters in carp. The elevation of TBARS seen at higher temperatures could be due to inadequate capacity of antioxidant enzymes to protect the cell against the detrimental effects of oxidative stress induced by higher temperatures.  相似文献   

13.
研究了微囊藻细胞抽提物亚慢性暴露对小鼠肝脏抗氧化系统的影响.采用腹腔注射进行连续染毒28d,染毒组剂量为3.3μg micmcystins/kg体重.结果显示,超氧化物歧化酶、过氧化氧酶、谷胱甘肽过氧化物酶在第4周时发生显著性升高,提示微囊藻细胞抽提物激活了小鼠肝脏抗氧化系统.谷胱甘肽-S-转移酶和对照组相比也显著提高,表明谷胱甘肽-S-转移酶作为解毒Ⅰ相酶加快了对肝脏微囊藻毒素的清除.脂质过氧化产物丙二醛也显著升高,说明抗氧化系统未能清除微囊藻细胞抽提物对小鼠肝脏的氧化损伤,导致了氧化应激的产生.结果表明低剂量微囊藻细胞抽提物长时间暴露能够导致小鼠肝脏氧化损伤.  相似文献   

14.
Tropical forest ecosystems may be subjected to climate-origin oxidative stress as it is observed in Southeast Brazil. The region is characterized by seasonal climate with well-defined wet and dry periods. Anthropogenic air pollutants are additional oxidative stress sources in these ecosystems. However, the tolerance of Brazilian tree species to oxidative stress is still unknown. Thus, the current field study aims to comparatively establish the range of antioxidant responses of ascorbate-glutathione cycle in Astronium graveolens, Croton floribundus and Piptadenia gonoacantha adult trees exposed to air pollutants and seasonal tropical climate as indicators of their increasing tolerance to oxidative stress. These are the most abundant species in the semideciduous Atlantic Forest, in Southeast Brazil. Variations in biochemical leaf traits (antioxidant defenses: ascorbate peroxidase, catalase, superoxide dismutase, glutathione reductase, ascorbate and glutathione; pigments: chlorophyll a, b and carotenoid; oxidative damage indicators: hydrogen peroxide and lipid peroxidation indicator) were determined. The native Brazilian tree species revealed distinct biochemical patterns in response to environmental oxidative stress during the wet and dry seasons. Biochemical leaf traits changed mainly in response to photoxidative stress, during the wet season. This variation was stimulated by better climate conditions to photosynthesis and plant growth, such as high light energy, water availability and temperatures. Catalase seemed to be the biochemical leaf tolerance indicator in all species during the wet season. The environmental conditions during the dry season, either of natural or anthropogenic origin, were stressful to the Brazilian tree species. They induced several changes in their biochemical leaf traits. Such changes were indicated by multilinear regression analyses. Oxidative/antioxidative imbalances, such as increased lipid peroxidation and decreased glutathione as well as the chlorophyll contents, were the most appropriate oxidative stress indicators during the dry season. C. floribundus was the most efficient species in terms of oxidative stress tolerance and it was followed by A. graveolens and P. gonoacantha.  相似文献   

15.
A flavone glucoside, luteolin-7-O-glucoside (luteolin-7-G) inhibited the formation of pentyl and 7-carboxyheptyl radicals in the reaction of 13-hydroperoxy-9,11-octadecadienoic (13-HPODE) acid with iron(II) ions. The inhibitory effect of luteolin-7-G was diminished in the presence of EDTA. These results indicated that the inhibitory effects of luteolin-7-G occur partly through the chelation of iron ions. Measurement of visible spectra also showed that luteolin-7-G chelates iron ions. On the other hand, luteolin-7-G did not inhibit the reaction under anaerobic conditions, suggesting that oxygen molecules participate in the inhibition. Oxygen consumption measurements showed that the luteolin-7-G/iron ion complexes react with oxygen molecules in competition with 13-HPODE acid, and free iron ions exclusively react with 13-HPODE acid. The reaction of luteolin-7-G/iron ion complexes with oxygen molecules possibly diminishes the formation of pentyl and 7-carboxyheptyl radicals.  相似文献   

16.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

17.
Oxidative stress in compatible virus-host plant interactions was studied in cucumber mosaic virus and zucchini yellow mosaic virus-infected Cucumis sativus and Cucurbita pepo plants. Both cucumber mosaic virus- and zucchini yellow mosaic virus-infected plants showed an enhanced peroxidation of polyunsaturated fatty acids indicating an advanced disintegration of membranes. Radical intermediates formed during lipid peroxidation co-oxidize pigment molecules and might thus account for virus-induced yellowing symptoms. Furthermore in infected plants an induction of superoxide dismutases, catalases, total peroxidases and ascorbate peroxidases was observed. All the peroxidase isoforms detected in Cucumis sativus and Cucurbita pepo , however, not only functioned as radical scavengers but also catalysed the formation of H2O2. Thus it can be presumed that the enhancement of peroxidases contributes to the oxidative stress in systemic plant-virus interactions. By way of oxidation of indole-3-acetic acid upregulated peroxidases might also be responsible for growth reductions and malformations in virus-infected plants.  相似文献   

18.
Multiple reactive oxygen/nitrogen species induce oxidative stress. Mammals have evolved with an elaborate defense network against oxidative stress, in which multiple antioxidant compounds and enzymes with different functions exert their respective roles. Radical scavenging is one of the essential roles of antioxidants and vitamin E is the most abundant and important lipophilic radical-scavenging antioxidant in vivo. The kinetic data and physiological molar ratio of vitamin E to substrates show that the peroxyl radicals are the only radicals that vitamin E can scavenge to break chain propagation efficiently and that vitamin E is unable to act as a potent scavenger of hydroxyl, alkoxyl, nitrogen dioxide, and thiyl radicals in vivo. The preventive effect of vitamin E against the oxidation mediated by nonradical oxidants such as hypochlorite, singlet oxygen, ozone, and enzymes may be limited in vivo. The synergistic interaction of vitamin E and vitamin C is effective for enhancing the antioxidant capacity of vitamin E. The in vitro and in vivo evidence of the function of vitamin E as a peroxyl radical-scavenging antioxidant and inhibitor of lipid peroxidation is presented.  相似文献   

19.
Abstract

The rapid emergence of various pesticides in the market is inevitable due to the demands from agriculture industries and domestic needs to control nuisance pests and to sustain green resources worldwide. However, long-term exposure to pesticide has led to adverse effects on male fertility. Organophosphate diazinon (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl] phosphorothiote) is an often abusively used pesticide, as it is effective and economical. This study is to determine the adverse effects of low-dose diazinon exposure on the male reproductive system. In this study, 72 Sprague–Dawley rats were segregated into 1, 2, and 8 weeks of exposure groups and further sub-grouped (n = 6) to receive 0, 10, 15, and 30 mg/kg body weight diazinon treatment. Rats were gavaged orally with diazinon and sacrificed under anaesthesia the day after the last exposure. Our results showed that consistent diazinon exposure decreased glutathione and catalase, and increased lipid peroxidation which together lead to diazinon-mediated oxidative stress. Additionally, diazinon increased serum lactate dehydrogenase and decreased serum testosterone, which may have caused sperm and histopathological anomalies. In conclusion, exposure to diazinon caused changes in lipid peroxidation and sperm, and these two effects might be causally linked.  相似文献   

20.
目的:分析原发性高血压患者小叶间肾动脉阻力指数(resistive index,RI)与临床指标的相关性,研究肾动脉阻力指数对高血压患者临床意义.方法:选择原发性高血压患者115例.用彩色多普勒超声仪测量肾小叶间动脉的RI,彩超检查的当天测量收缩压(SBP)和舒张压(DBP),计算脉压(PP)、平均血压(MBP);检测血清尿素氮(BUN)、血清肌酐(Scr)、血清尿酸(UA),估算内生肌酐清除率(Ccr);分析小叶间肾动脉RI与临床指标的相关性.结果:高血压患者小叶间肾动脉RI与Ccr、SBP、DBP、PP、年龄、高血压发病时间均有相关性.高血压分级、平均血压、BUN、Scr、UA与小叶间肾动脉RI无相关性.结论:原发性高血压患者的小叶间肾动脉RI与Ccr、SBP、DBP、PP、年龄、高血压发病时间相关,可以间接反映高血压对肾动脉的影响及全身动脉硬化的状况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号