首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Two forms of cytochrome P450 aromatase, acting in both the brain and the ovary, have been implicated in controlling ovarian development in fish. To better understand the expression of these two enzymes during sexual differentiation in Atlantic halibut (Hippoglossus hippoglossus), real-time PCR was used to quantify the mRNA levels of ovary- (cyp19a) and brain-type cytochrome P450 aromatase (cyp19b) genes in the gonad and brain during gonadal development. Both enzymes showed high levels of expression in both tissues in developmental stages prior to histologically detectable ovarian differentiation (38 mm fork length), with increased expression occurring slightly earlier in the brain than the gonad. Cyp19a showed a second peak of expression in later stages (> 48 mm) in the gonad, but not the brain. Cyp19b expression was generally higher in the brain than the gonad. These results suggest that sexual differentiation may begin in the brain prior to gonadal differentiation, supporting the idea that steroid hormone expression in the brain is a key determinant of phenotypic sex in fish. In an examination of sexually immature adults, cyp19a was highly expressed in female gonad while cyp19b was very highly expressed in the pituitary of both sexes. The ratio of cyp19a to cyp19b expression was much higher in ovaries than in testes in the adult fish, so this ratio was analyzed in the developing gonads of juvenile halibut in an attempt to infer their sex. This was only partially successful, with about half the fish in later developmental stages showing apparently sex-specific differences in aromatase expression.  相似文献   

5.
6.
Red-eared slider turtles are genetically bipotential for sex determination. In this species, as in many other reptiles, incubation temperature of the egg determines gonadal sex. At higher incubation temperatures females are produced and increasing temperature appears to increase estrogen production in the embryonic brain. Treatment of eggs incubating at a male-producing temperature with exogenous estrogen causes ovaries to form. At a female-biased incubation temperature, prevention of estrogen biosynthesis or administration of nonaromatizable androgens results in the development of testes. In mammals, steroidogenic factor 1 (SF-1) regulates most genes required for estrogen biosynthesis, including aromatase. In both mammals and red-eared sliders, SF-1 is differentially expressed in males and females during gonadogenesis. We have examined both SF-1 gene expression and aromatase activity in embryos incubating at different temperatures and after manipulation to change the course of gonadal development. Our findings indicate a central role for SF-1 in enacting the effect of estrogen. Estrogen treatment directly or indirectly downregulates SF-1 and, ultimately, causes development of females. The inhibition of estrogen results in upregulation of SF-1 and male hatchlings. Thus, SF-1 may lie at the center of one molecular crossroad in male versus female differentiation of the red-eared slider.  相似文献   

7.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

8.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase activity and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

9.
10.
To investigate whether a female sex steroid, estrogen, acts as a natural inducer of female gonadal sex determination (or ovary formation) in the medaka fish, Oryzias latipes, the effects of an aromatase inhibitor and anti-estrogens on sexual differentiation of gonads were examined. We found that both drugs did not show any discernible effects on the genetically determined sex differentiation in both sexes. However, the aromatase inhibitor impaired the paradoxical effects of androgen (a male sex steroid), and the anti-estrogens inhibited the male-to-female sex reversal caused by estrogen. Treatments of the fertilized eggs with androgen disturbed the gonadal sex developments in both sexes, suggesting that sex steroid synthesis is detrimental to the gonadal sex developments in the medaka embryos. These results are consistent with the previous observation that sex steroids are not synthesized before the onset of gonadal sex differentiation, and suggest that ovary formation in the genetic females of the medaka fish is not dependent on estrogen.  相似文献   

11.
The formation of estrogens from androgens in all vertebrates is catalyzed by the "aromatase" complex, which consists of a membrane bound P(450) enzyme, P(450) aromatase (which binds the androgen substrate and inserts an oxygen into the molecule), and a flavoprotein (NADPH-cytochrome P450 reductase). Among vertebrates, the two major sites of aromatase expression are the brain and gonads. Given the importance of estrogen in reptile sex determination, we set out to examine whether P450arom was involved in the initiation and/or stabilization of sex determination in turtles. We examined the expression of aromatase activity in the brain and gonads of two turtle species exhibiting temperature dependent sex determination (TSD), the diamondback terrapin (Malaclemys terrapin), and the common snapping turtle (Chelydra serpentina). Estradiol when applied at stage 14 of the terrapin induces expression of aromatase in the gonad of embryos incubated at male temperatures (26.5 degrees C). The level of expression is similar to that of a normal embryonic ovary. When applied at stage 22, estradiol does not induce aromatase expression in the terrapin. The xenoestrogen, nonylphenol, sex reverses terrapin embryos at 26.5 degrees C. Letrazole, a nonsteroidal aromatase inhibitor, suppresses aromatase activity in the brain at either incubation temperature. Ovotestes are produced by letrazole administration in the terrapin when incubated at 30.5 degrees C. In the snapping turtle at stage 23, gonadal and brain aromatase activity in embryos incubated at female temperatures (30.5 degrees C) is nearly half that exhibited in terrapin embryos at the same temperature. Moreover, letrazole administration suppresses aromatase expression to nearly basal levels. At male incubation temperatures (26.5 degrees ), brain aromatase expression is nearly three times higher than at female temperatures, while gonadal expression levels are nearly one third lower. However, the gonadal expression levels at male temperatures in the snapping turtle are nearly 25 times higher than that found in the terrapin. Estradiol administration elevates this level nearly three fold. These data suggest that is not merely the expression of aromatase that is important for ovarian development, but that the level of expression may be more important.  相似文献   

12.
Developmental endocrinology of the reproductive axis in the chicken embryo   总被引:6,自引:0,他引:6  
In mammals, the phenotype of the homogametic sex develops in the (relative) absence of steroids and the phenotype of the heterogametic sex is imposed by the early action of steroids. In contrast, the heterogametic sex in avian species is the female and the presence of estrogens and their receptors plays a crucial role in female sexual differentiation. The time- and sex-dependent expression of enzymes involved in steroidogenesis which determine the ratio of androgens/estrogens produced by the gonads has been extensively investigated during the last 5-6 years. These results all show that the lack of estrogen synthesis in the male appears to be due to the extremely low levels of 17beta-hydroxysteroid dehydrogenase and P450aromatase expression. In females, extensive expression of the aromatase gene (around day 5-6 of incubation), leading to estrogen synthesis, and specific expression of the estrogen receptor-mRNA in the left gonad results in the development of a functional left ovary. Other sex differences can be found in the expression of the inhibin subunit genes in gonads of chicken embryos and in circulating concentrations of inhibin, follicle stimulating hormone (FSH) and steroids. Sex reversal attempts have been made by varying incubation temperatures, by using anti-estrogens, androgens, aromatase inhibitors and synthetic steroids. In ovo administration of a sex steroid hormone or an inhibitor of endogenous sex steroid synthesis can cause phenotypical sex reversal. All these experiments show that the development of gonads in birds is very sensitive to changes in the embryonic hormonal environment, sometimes resulting in changes of postnatal reproduction and even growth.  相似文献   

13.
Japanese flounder, Paralichthys olivaceus, provides an excellent model to elucidate the roles of sex steroid hormones in gonadal sex differentiation because the sex is easily altered by sex steroid treatments or water temperature control during the sex differentiation. We have previously shown that high water temperature, an aromatase inhibitor (fadrozole), or 17alpha-methyltestosterone treatment causes the sex-reversal from genetic females to phenotypic males and suppression of mRNA expression of ovary-type P450 aromatase (P450arom), which is a steroidogenic enzyme responsible for the conversion of androgens to estrogens, in Japanese flounder. In the present study, we demonstrate that treatment of the genetic females with anti-estrogen (tamoxifen) leads to their masculinization, suppresses P450arom mRNA expression, and induces mRNA expression of Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta (TGF-beta) superfamily, while it has no effect on mRNAs expression of estrogen receptor-alpha (ERalpha) and ERbeta. In contrast, 17beta-estradiol counteracted masculinization of the genetic females by tamoxifen or high water temperature treatment, up-regulated P450arom mRNA expression, and down-regulated MIS mRNA expression. These results strongly suggest that estrogen signaling through ERs dramatically influences the gonadal sex differentiation by regulating P450arom and MIS mRNA expression.  相似文献   

14.
15.
16.
The aim of this study was to determine 1) the time of onset and cellular localization of gene expression for steroidogenic factor-1 (SF-1), steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase/Delta(5),Delta(4) isomerase (3beta-HSD), and the cytochrome P450 enzymes for cholesterol side-chain cleavage (P450(scc)), 17alpha-hydroxylase (P450(17alphaOH)), and aromatase (P450(arom)) during gonadal development; and 2) the amount of progesterone, androstenedione, testosterone, and 17beta-estradiol present in the fetal sheep gonad. Fetuses were collected on Days 24, 26, 28, 30, 32, 35, 40, 55, and 75 of gestation, and gene expression was determined by in situ hybridization. The steroid content of gonads collected on Days 30, 35, 55, and 75 of gestation was determined by RIA. Developing gonads collected from both male and female fetuses were steroidogenically active around the time of morphological sexual differentiation. In the female, the steroidogenic cells were initially located at the boundary of the cortex and medulla but become increasingly restricted to the mesonephric-derived cell streams. In the male, once tubules were identifiable, steroidogenesis was restricted to the interstitial regions. Interestingly, expression of both SF-1 and 3beta-HSD was observed prior to morphological sexual differentiation. In addition, expression of both of these genes was more widespread than the other genes in both males and females.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号