首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600–5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization.  相似文献   

2.
Using the mitochondrial cytochrome oxidase I (COI) gene, we assessed the phylogeographic structure of Prosimulium neomacropyga, a black fly (Simuliidae) whose distribution in the US Southern Rockies ecoregion is limited to alpine tundra streams. Given high habitat specificity, lack of hydrological connection between streams, and a terrestrial environment restrictive to insect flight, we hypothesized limited gene flow. A spatially nested sampling design showed that grouping populations according to high-elevation 'islands' of alpine tundra (which typically include headwater streams of > 1 watershed) explained a significant proportion of genetic variation while grouping streams according to major watershed (across islands) did not. Nested clade analysis and isolation-by-distance (IBD) relationships further implicated limited ongoing gene flow within but not among the isolated alpine islands. IBD was strong among five streams within an individual island using each of four alternative models of pairwise landscape connectivity for flying insects. Results of all landscape models were positively correlated, suggesting that straight-line distance is an acceptable surrogate for presumably more biologically meaningful connectivity measures in this system. IBD was significantly weaker across the entire study area, comprised of three separate islands. Overall, population structure was significant with F(ST) = 0.38, suggesting limited dispersal across a small spatial extent.  相似文献   

3.
The circumpolar arctic fox Alopex lagopus thrives in cold climates and has a high migration rate involving long-distance movements. Thus, it differs from many temperate taxa that were subjected to cyclical restriction in glacial refugia during the Ice Ages. We investigated population history and genetic structure through mitochondrial control region variation in 191 arctic foxes from throughout the arctic. Several haplotypes had a Holarctic distribution and no phylogeographical structure was found. Furthermore, there was no difference in haplotype diversity between populations inhabiting previously glaciated and unglaciated regions. This suggests current gene flow among the studied populations, with the exception of those in Iceland, which is surrounded by year-round open water. Arctic foxes have often been separated into two ecotypes: 'lemming' and 'coastal'. An analysis of molecular variance suggested particularly high gene flow among populations of the 'lemming' ecotype. This could be explained by their higher migration rate and reduced fitness in migrants between ecotypes. A mismatch analysis indicated a sudden expansion in population size around 118 000 BP, which coincides with the last interglacial. We propose that glacial cycles affected the arctic fox in a way opposite to their effect on temperate species, with interglacials leading to short-term isolation in northern refugia.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 79–89.  相似文献   

4.
Shifting drainage patterns in western North America, shaped by geological activity and changing global climates, have influenced the evolution of many aquatic taxa. We investigated the role of late Pleistocene high stands in pluvial Lake Lahontan on the genetic structure of Richardsonius egregius, a minnow endemic to the Lahontan Basin of the western Great Basin. We used the mitochondrial cytochrome b gene to generate a phylogeny and assess intraspecific genetic diversity, to estimate divergence times between clades, and to evaluate whether gene flow currently occurs. The results obtained show that R. egregius exhibits genetic divergence between eastern and western Lahontan Basin populations. Divergence time estimates show that intraspecific genetic diversification began in the Pliocene or early Pleistocene, before the pluvial lake high stands associated with the last glacial maximum. These results imply that the fluctuating water levels in pluvial Lake Lahontan had a minimal effect on shaping the genetic architecture of R. egregius. Coalescent analyses using the immigration with migration model show that contemporary gene flow between eastern and western Lahontan Basin populations does not occur. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 163–176.  相似文献   

5.
Understanding genetic consequences of habitat fragmentation is crucial for the management and conservation of wildlife populations, especially in case of species sensitive to environmental changes and landscape alteration. In central Europe, the Alps are the core area of black grouse Tetrao tetrix distribution. There, black grouse dispersal is limited by high altitude mountain ridges and recent black grouse habitats are known to show some degree of natural fragmentation. Additionally, substantial anthropogenic fragmentation has occurred within the past ninety years. Facing losses of peripheral subpopulations and ongoing range contractions, we explored genetic variability and the fine‐scale genetic structure of the Alpine black grouse metapopulation at the easternmost fringe of the species’ Alpine range. Two hundred and fifty tissue samples and non‐invasive faecal and feather samples of eleven a priori defined subpopulations were used for genetic analysis based on nine microsatellite loci. Overall, eastern Alpine black grouse show similar amounts of genetic variation (HO = 0.65, HE = 0.66) to those found in more continuous populations like in Scandinavia. Despite of naturally and anthropogenically fragmented landscapes, genetic structuring was weak (global FST < 0.05), suggesting that the actual intensity of habitat fragmentation does not completely hamper dispersal, but probably restricts it to some extent. The most peripheral subpopulations at the edge of the species range show signs of genetic differentiation. The present study gives new insights into the population genetic structure of black grouse in the eastern Alps and provides a more fine‐scale view of genetic structure than previously available. Our findings will contribute to monitor the current and future status of the population under human pressures and to support supra‐regional land use planning as well as decision making processes in responsibilities of public administration.  相似文献   

6.
1. Gene flow in populations of stream insects is expected to depend on the distance between and the connectedness of sites in stream networks, and on dispersal ability (i.e. larval drift and adult flight).
2. Yoraperla brevis (Banks) is an abundant and characteristic stonefly of smaller streams in the northern Rocky Mountains. The present authors analysed genetic structure at 27 sites in sevenz streams flowing into the Bitterroot River in western Montana, USA. Cellulose acetate electrophoresis identified five variable loci with 16 alleles.
3. Genotype frequencies conformed to Hardy–Weinberg expectations. Within-stream differentiation was low and among-stream variation ( F st) was an order of magnitude higher.
4. UPGMA grouped sites within streams and also grouped adjacent streams. The tree produced by the Neighbour Joining Method was similar although not quite so clear cut.
5. This orderly pattern (i.e. Hardy–Weinberg proportions, homogeneity within streams and geographical structure) contrasts strongly with patterns observed in invertebrates from subtropical streams in Australia. Yoraperla brevis maintains large populations in predictable environments, has a long life-cycle with a likelihood of cohort mixing, emerges synchronously in large breeding populations and occupies streams separated by areas of high relief; the Australian situation is the opposite in most respects.
6. Further analysis of a range of species is required to determine whether the different genetic structure in Y. brevis compared to the Australian species occurs more generally in North American stream insects.  相似文献   

7.
8.
Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects.  相似文献   

9.
Many aquatic plant species are distributed over large areas and diverse environments with populations interconnected by abiotic and biotic mediators. Here, we examined differences and similarities in the population genetic structure of six sympatric and widespread aquatic plant species. We sampled the aquatic species from six Chinese lakes found on plateaus, plains, and different river systems and analyzed them using inter‐simple sequence repeat (ISSR) markers. Samples originating from each lake tended to cluster together. Of the six species, only Nymphoides peltata and Myriophyllum spicatum could be divided into plateau and plain groups, once Taihu Lake individuals were excluded. Genetic similarities between populations connected by the Yangtze River were not consistently higher than unconnected populations. Populations from Taihu Lake and/or Weishanhu Lake were distant from other lake populations for all species except Potamogeton lucens. The Taihu and Weishanhu populations clustered for Ceratophyllum demersum and Typha latifolia. Hydrophilous C. demersum had the lowest gene flow (Nm = 0.913), whereas the entomophilous Hydrocharis dubia (Nm = 2.084) and N. peltata (Nm = 2.204) had the highest gene flow. The genetic relationships among distant populations of aquatic plants reflect the comprehensive effects of environmental selection pressure and biotic and abiotic connectivity. Differences in environmental factors between plateau and plain lakes and long distance hydrochory have limited importance on aquatic plant genetic structures. Among multiple evolutionary forces, gene flow mediated by birds may play the most important role in the formation of genetic patterns in the six species examined. For example, the close genetic relationship between Taihu Lake and Weishanhu Lake populations, each in different river systems and with different climates, may be related to the migration routes of birds. Differences in gene flow among the six aquatic plants may be attributable to different bird‐transport and the fruit traits of each species.  相似文献   

10.
The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from a biogeographic boundary, geographical distance and the distribution of suitable habitat were investigated in Axoclinus nigricaudus, a small subtidal rock-reef fish, throughout its range in the Gulf of California. A 408-bp fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between 28 of 36 possible combinations of population pairs. Phylogenetic analyses, hierarchical analyses of variance and a modified Mantel test substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics, including temperature and salinity, but does not coincide with known oceanographic circulation patterns or any known historic barriers. There was an overall relationship of increasing genetic distance with increasing geographical distance between population pairs, in a manner consistent with isolation-by-distance. A significant habitat-by-geographical-distance interaction term indicated that, for a given geographical distance, populations separated by discontinuous habitat (sand) are more distinct genetically than are populations separated by continuous habitat (rock). In addition, populations separated by deep open waters were more genetically distinct than populations separated by continuous habitat (rock). These results indicate that levels of genetic differentiation among populations of A. nigricaudus cannot be explained by a single factor, but are due to the combined influences of biogeography, geographical distance and availability of suitable habitat.  相似文献   

11.
Here we report a high level of mtDNA variationfrom RFLP analysis within A. p. pallipes from 21 French and 4British populations. Seventeen haplotypes were recorded among 269individuals. Nucleotide sequence divergence (p) among mtDNAhaplotypes ranged from 0.0019 to 0.0425. Nucleotide diversity ()ranged from 0.01 to 0.006 (mean = 0.0031) and from 0 to 0.001(mean = 0.00037) for populations located in southern and northernFrance, respectively. Graphical representation from principalcoordinate analysis based on Nei's genetic distance values amongpopulations showed two groups, cluster A, including the 16populations sampled in the north-western and north-easternFrance, England and Wales and cluster B containing 9 populationssampled in the central and southern of France. No geneticdifferences were noted among the most northern French and Englishpopulations whereas marked interpopulation genetic diversity wasobserved in southern populations. Such genetic heterogeneityamong populations of A. p. pallipes appears to be related tohabitat fragmentation and subsequent recolonizations fromrefugial areas during the Pleistocene. Implications for theconservation of A. p. pallipes are discussed.  相似文献   

12.
Expected consequences of global warming include habitat reduction in many cool climate species. Rock ptarmigan is a Holarctic grouse that inhabits arctic and alpine tundra. In Europe, the Pyrenean ptarmigan inhabits the southern edge of the species' range and since the last glacial maximum its habitat has been severely fragmented and is restricted to high-alpine zones or 'sky islands'. A recent study of rock ptarmigan population genetic in Europe found that the Pyrenean ptarmigan had very low genetic diversity compared with that found in the Alps and Scandinavia. Habitat fragmentation and reduced genetic diversity raises concerns about the viability of ptarmigan populations in the Pyrenees. However, information on population structuring and gene flow across the Pyrenees, which is essential for designing a sound management plan, is absent. In this study, we use seven microsatellites and mitochondrial control region sequences to investigate genetic variation and differentiation among five localities across the Pyrenees. Our analyses reveal the presence of genetic differentiation among all five localities and a significant isolation-by-distance effect that is likely the result of short dispersal distances and high natal and breeding philopatry of Pyrenean ptarmigan coupled with severe habitat fragmentation. Furthermore, analysis of molecular variance, principal component analysis and Bayesian analysis of genetic structuring identified the greatest amount of differentiation between the eastern and main parts of the Pyrenean chain separated by the Sègre Valley. Our data also show that the Canigou massif may host an isolated population and requires special conservation attention. We propose a management plan which includes the translocation of birds. If a sky island structure affects genetic divergence in rock ptarmigan, it may also affect the genetic structure of other sky island species having low dispersal abilities.  相似文献   

13.
The uptake of natural living resources for human consumption has triggered serious changes in the balance of ecosystems. In the archipelagos of Macaronesia (NE Atlantic), limpets have been extensively exploited probably since islands were first colonized. This has led to profound consequences in the dynamics of rocky shore communities. The Patella candei complex includes various subspecies of limpets that are ascribed to a particular archipelago and has been the focus of several taxonomic surveys without much agreement. Under a conservational perspective, we apply morphometric and genetic analyses to test subspecies boundaries in P. candei and to evaluate its current population connectivity throughout Macaronesia (Azores, Madeira, and Canaries). A highly significant genetic break between archipelagos following isolation by distance was detected (FST = 0.369, p < .001). Contrastingly, significant genetic differentiation among islands (i.e., Azores) was absent possibly indicating ongoing gene flow via larval exchange between populations. Significant shell‐shape differences among archipelagos were also detected using both distance‐based and geometric morphometric analyses. Adaptive processes associated with niche differentiation and strong barriers to gene flow among archipelagos may be the mechanisms underlying P. candei diversification in Macaronesia. Under the very probable assumption that populations of P. candei from each archipelago are geographically and/or ecologically isolated populations, the various subspecies within the P. candei complex may be best thought of as true species using the denomination: P. candei in Selvagens, Patella gomesii in Azores, Patella ordinaria in Madeira, and Patella crenata for Canaries. This would be in agreement with stock delimitation and units of conservation of P. candei sensu latu along Macaronesia.  相似文献   

14.
This study analyses the allozymic variation of 20 presumptive loci in eight populations of Rana saharica from Morocco. Populations were collected from the very different climatic zones of this country: the Rif area, the Atlas mountains and the desert. Moroccan water-frog populations are genetically well differentiated from the geographically closed Algerian populations. Thus, to check if such a differentiation process is taking place within Moroccan water frogs, we attempted to analyse the genetic structure and patterns of gene flow of Moroccan populations, by means of estimates of Hardy-Weinberg equilibrium, F-statistics and indirect measures of gene flow. Fst(0.250) and Fis(0.254) values were similar, which means that both intra and interpopulation differentiation contribute equally to the amount of genetic divergence revealed. Fis values indicated some degree of structure within ponds, which is possibly related to the homing behaviour of some amphibians. On the other hand, Fst and genetic distances between populations were not very high. Despite the low levels of gene flow estimated, together with the homing behaviour revealed and the spatially discontinuous distribution, it was found that genetic differentiation among populations was not as high as expected. The likelihood of genetic homogeneity being the consequence of continuous population extinction and recolonization events is discussed.  相似文献   

15.
The olive fly, Bactrocera oleae, is the major pest of olives in most commercial olive-growing regions worldwide. The species is abundant in the Mediterranean basin and has been introduced recently into California and Mexico, creating problems for quarantine protection and international trade. Here, we use nuclear microsatellite markers and mitochondrial sequences to examine the history of olive fly range expansion and colonization. Sampled populations span the current distribution of the olive fly worldwide, including South and Central Africa, Pakistan, Mediterranean Europe and Middle East, California, and Mexico. The Pakistani populations appear to be genetically well differentiated from the remaining populations, though rooting the origins of the species is problematic. Genetic similarity and assignment tests cluster the remaining populations into two genetic groups--Africa and a group including the Mediterranean basin and the American region. That Africa, and not the Mediterranean, is the origin of flies infesting cultivated olive is supported by the significantly greater genetic diversity at microsatellite loci in Africa relative to the Mediterranean area. The results also indicate that the recent invasion of olive flies in the American region most likely originated from the Mediterranean area.  相似文献   

16.
Wang R  Compton SG  Chen XY 《Molecular ecology》2011,20(21):4421-4432
Fragmentation reduces population sizes, increases isolation between habitats and can result in restricted dispersal of pollen and seeds. Given that diploid seed dispersal contributes more to shaping fine-scale spatial genetic structure (SGS) than haploid pollen flow, we tested whether fine-scale SGS can be sensitive to fragmentation even if extensive pollen dispersal is maintained. Castanopsis sclerophylla (Lindley & Paxton) Schottky (Fagaceae), a wind-pollinated and gravity seed-dispersed tree, was studied in an area of southeast China where its populations have been fragmented to varying extents by human activity. Using different age classes of trees in areas subject to varying extents of fragmentation, we found no significant difference in genetic diversity between prefragmentation vs. postfragmentation C. sclerophylla subpopulations. Genetic differentiation among postfragmentation subpopulations was also only slightly lower than among prefragmentation subpopulations. In the most fragmented habitat, selfing rates were significantly higher than zero in prefragmentation, but not postfragmentation, cohorts. These results suggest that fragmentation had not decreased gene flow among these populations and that pollen flow remains extensive. However, significantly greater fine-scale SGS was found in postfragmentation subpopulations in the most fragmented habitat, but not in less fragmented habitats. This alteration in SGS reflected more restricted seed dispersal, induced by changes in the physical environments and the prevention of secondary seed dispersal by rodents. An increase in SGS can therefore result from more restricted seed dispersal, even in the face of extensive pollen flow, making it a sensitive indicator of the negative consequences of population fragmentation.  相似文献   

17.
Patterns of gene flow and genetic structuring were examined in the canyon treefrog, Hyla arenicolor (Cope). Hierarchical analysis of genetic variation was performed on mitochondrial cytochrome b haplotypes from 323 individuals, representing 32 populations from previously described phylogeographic regions. Results from AMOVA revealed that 60.4-78.9% of the recovered genetic variation was the result of differences in the appointment of genetic variation between subdivisions of the primary phylogeographic regions. In contrast, populations only contained between 13.9 and 30.1% of the observed haplotypic variation. Gene flow estimates based on calculations of phi ST revealed moderate levels of gene flow within phylogeographic regions, but there was no evidence of gene flow between these regions, suggesting that geographical boundaries were probably important in the formation of phylogeographic structure in H. arenicolor. Phylogeographic regions exhibited very different patterns of gene flow. One region showed evidence of recent colonization. Another region exhibited very limited gene flow. Moderate to high estimates of gene flow were obtained for populations from two distinct phylogeographic regions characterized by mesic and xeric environments. Isolation by distance was observed in both regions suggesting that these regions are in genetic equilibrium. Because gene flow is extremely unlikely between the populations in the xeric region, this result is interpreted as historical gene flow. These results indicate that isolation-by-distance effects may still be observed even when population genetic structure and gene flow are the result of historical association.  相似文献   

18.
Aim  Phylogeographical breaks may reflect historical or present-day impediments to gene flow, and the congruence of these breaks across multiple species lends insight into evolutionary history and connectivity among populations. In marine systems, examining the concordance of phylogeographical breaks is challenging due to the varied sampling scales in population genetics studies and the diverse life histories of marine organisms. A quantitative approach that considers the effects of sampling scale and species life history is needed.
Location  The south-east and south-west coasts of the United States.
Methods  We quantitatively analysed previously published datasets of marine fauna to look for concordance among phylogeographical breaks. We used a bootstrap approach to determine the regions where phylogeographical breaks are more common than expected by chance among species with planktonic dispersal as well as those with restricted dispersal.
Results  On the south-west coast, breaks were clustered near Point Conception among planktonic dispersers and near Los Angeles among restricted dispersers. On the south-east coast, breaks were most common near the southern tip of Florida for planktonic dispersers and near Cape Canaveral for restricted dispersers.
Main conclusions  Dispersal ability is an important determinant of phylogeographical patterns in marine species. Breaks among planktonic dispersers on both coasts are congruent with present-day flow-mediated barriers to dispersal, suggesting that phylogeographical structure in species with planktonic larvae may reflect contemporary oceanography, while breaks in restricted dispersers reflect historical processes. These results highlight the importance of explicitly considering sampling scale and life history when evaluating phylogeographical patterns.  相似文献   

19.
Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 × 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals.  相似文献   

20.
Crozetia is a genus of black flies endemic to the Crozet Islands in the Indian Ocean. No internal symbiotes were previously known from Crozetia species. We report two species of trichomycete symbiotes Stachylina litoralis and Smittium culicisoides from Crozetia seguyi. Larvae of C. seguyi were examined from three sites. The infection rates for St. litoralis was 10.0-33.3% (n=47) of the larvae and Sm. culicisoides was 46.1-85.7% (n=47). No other symbiotes were discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号