首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural transformation is the mechanism of procaryotic gene transfer that involves the uptake and expression of genetic information encoded in extracellular DNA. This process has been regarded as a mechanism to transfer genes (primarily chromosomal markers) between closely related strains or species. Here we demonstrate the cell-contact-dependent transfer of a non-conjugative plasmid from a laboratory E. coli strain to a marine Vibrio species, the first report of intergeneric natural plasmid transformation involving a marine bacterium. The nucleic acid synthesis inhibitors nalidixic acid and rifampicin inhibited the ability of the E. coli to function as a donor. However, dead cells also served as efficient donors. There was an obligate requirement for cell contact. No transfer occurred in the presence of DNase I, when donors and recipients were separated by a 0.2-micron filter, or when spent medium alone was used as a source of transforming DNA. These results indicate that contact-mediated intergeneric plasmid exchange can occur in the absence of detectable viable donor cells and that small non-conjugative plasmids can be spread through heterogeneous microbial communities by a process previously not recognized, natural plasmid transformation. These findings are important in the assessment of genetic risk to the environment, particularly from wastewater treatment systems and the use of genetically engineered organisms in the environment.  相似文献   

2.
During the conjugal transfer of the R64-11 plasmid at 42 C from donor cells thermosensitive for vegetative deoxyribonucleic acid (DNA) synthesis to recipient minicells, the plasmids are conjugally replicated in the donor cells. This conjugal replication is inhibited by nalidixic acid, and the degree of inhibition is comparable to the reduction in the amount of plasmid DNA transferred to the recipient minicells in the presence of the drug. In addition, the size of DNA transferred to the minicells and the fraction of conjugally replicated DNA in the donor cells that can be isolated as closed-circular plasmid DNA under alkaline conditions are both reduced by nalidixic acid. When the drug is added to a mating that is underway, the rate of conjugal replication is immediately reduced. This change is accompanied by a reduction in the amount of conjugally replicated DNA in the donor cells that can be isolated as closed-circular plasmid DNA. Furthermore, conjugally replicated plasmid DNA that is not associated with the donor cell membrane becomes membrane bound after the addition of nalidixic acid.  相似文献   

3.
1. It was shown that a system previously described for labelling R-factor DNA during transfer to an irradiated recipient strain of Escherichia coli did not allow high selectivity in the incorporation of thymine into R-factor DNA. 2. Lack of selectivity was shown to be due to cross-feeding from recipient to donor strain. 3. An improved system using a nalidixic acid-resistant recipient strain is described in which incorporation of thymine into the DNA of donor cells is minimized by addition of nalidixic acid after completion of transfer of the plasmid during conjugation.  相似文献   

4.
Haemophilus parainfluenzae isolates recovered from patients with respiratory diseases were studied for their ability to undergo genetic transformation by isogenic DNA. Two chromosomal markers, streptomycin resistance and nalidixic acid resistance, were tested for transformation efficiencies in H. parainfluenzae recipients from three biotypes. Most efficient in transformation was biotype II, followed by biotype I, while biotype III was nontransformable. Lack of transformation was not owing to poor donor activity of DNA, but to inability of the cells to develop competence. Strains that formed clumps in liquid media were nontransformable. Since the transformable biotype II is one of the prevalent biotypes world wide, one can speculate that DNA transformation probably plays a major role in the spread of drug resistance in H. parainfluenzae. Received: 9 December 1997 / Accepted: 26 February 1998  相似文献   

5.
Use of nonselective medium for plating cells following mating has revealed that Rec recipient strains of E. coli may be killed as a result of conjugation. Sensitivity of RecA-, RecB-, and RecC- recipients increases with ratio of donor: recipient cells in mating mixtures and with time of mating. A Rec+ recipient shows no lethal zygosis in these experiments performed without aeration. Cell contact does not seem to be responsible for the sensitivity of Rec- strains, since lethality is prevented when cell contact is permitted but DNA transfer is not. Thus, an event(s) occuring subsequent to entry of donor DNA appears to cause lethality in Rec- recipients.  相似文献   

6.
The exchange of radioactivity between lymphocytes, labelled with (3H) thymidine after stimulation with Concanavalin A, and recipient V79 fibroblasts in culture was studied. The radioactive material involved in this exchange was macromolecular deoxyribonucleic acid as well as its breakdown products. This deoxyribonucleic acid from lymphocytes localised in the nuclei of the host cells soon after contact between donor and recipients. This occurred even when the V79 fibroblasts were confluent at high cell density, and thus in a steady, non-growing state with respect to cell numbers.
The fate of the radioactive donor lymphocyte deoxyribonucleic acid, substituted with bromodeoxyuridine, was followed in the recipient cells by analysing its buoyant density in caesium chloride gradients. This deoxyribonucleic acid was found to become associated with the nuclear deoxyribonucleic acid of the host cells, involving both retention of relatively intact donor deoxyribonucleic acid as well as its breakdown and re-utilisation for host cell deoxyribonucleic acid synthesis. Nongrowing recipient cells were found to retain the donor deoxyribonucleic acid in relatively intact form for much longer periods than when the same cells were in logarithmic growth phase.  相似文献   

7.
Heterospecific transformation between Haemophilus influenzae and H. parainfluenzae was investigated by isopycnic analysis of deoxyribonucleic acid (DNA) extracts of (3)H-labeled transforming cells that had been exposed to (32)P-labeled, heavy transforming DNA. The density distribution of genetic markers from the resident DNA and from the donor DNA was determined by transformation assay of fractions from CsCl gradients, both species being used as recipients. About 50% of the (32)P atoms in H. parainfluenzae donor DNA taken up by H. influenzae cells were transferred to resident DNA, and only a small amount of the label was lost under conditions of little cell growth. There was less transfer in the reciprocal cross, and almost half of the donor label was lost. In both crosses, the transferred donor material transformed for the donor marker considerably more efficiently when assayed on the donor species than on the recipient species, indicating that at least some of the associated (32)P atoms are contained in relatively long stretches of donor DNA. When the transformed cultures were incubated under growth conditions, the donor marker associated with recipient DNA transformed the donor species with progressively decreasing efficiency. The data indicate that the low heterospecific transformation between H. influenzae and H. parainfluenzae may be due partly to events occurring before association of donor and resident DNA but results mostly from events that occur after the association of the two DNA preparations.  相似文献   

8.
Summary The ability of a recA Hfr strain of Escherichia coli to form colonies is extremely sensitive to inhibition by ultraviolet light (Fig. 2). Furthermore, in this strain the synthesis of DNA is stopped completely by a dose of 385 ergs/mm2 of UV (Fig. 3). Nevertheless, the ability of this recA Hfr strain to act as a donor in sexual recombination was no more sensitive to UV than that of a wild type donor (Fig. 1). Furthermore, when irradiated and mated with a recA female, in which DNA synthesis was also inhibited by UV (Fig. 3), there was a net synthesis of DNA as measured by the incorporation of C14 thymidine (Fig. 4). By using nalidixic acid resistant recA donors and recipients in all combinations, irradiating with UV and treating with nalidixic acid during mating, it is shown that DNA was synthesized by the donor (Fig. 5). It is concluded that synthesis of DNA directed by the sex factor during mating in a recA donor is not as sensitive to inhibition by UV as normal DNA synthesis in a recA donor.  相似文献   

9.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

10.
Mechanism of Action of Nalidixic Acid on Conjugating Bacteria   总被引:8,自引:5,他引:3       下载免费PDF全文
When nalidixic acid, a specific and effective inhibitor of cellular deoxyribonucleic acid synthesis, is added to conjugating bacteria at any time during mating, it stops genetic transfer provided the donor bacterium is sensitive to the drug. When this inhibition is released by the removal of the nalidixic acid, transfer does not resume at the point on the chromosome where it was stopped, but begins again at the transfer origin. Curves relating the effects of various low doses of nalidixic acid to the frequency of recombination reveal that several "hits" are necessary to inhibit recombination for early markers. The number of required "hits" decreases as the distance of the marker from the transfer origin increases. Transfer between drug-resistant cells may also be inhibited by nalidixic acid. The effect of high drug doses on matings between resistant cells is similar to that of low drug doses on matings with a sensitive male.  相似文献   

11.
Genetic transformation in recA1 strains of Bacillus subtilis was studied to test the hypothesis that, in these strains, a major pathway of recombination is missing, leaving only residual transformation via a pathway specific for transduction. The two putative recombinational pathways have been hypothesized to differ in either length of synapsed regions or specificity for nucleotide sequence homology. It was found that the efficiency of transformation of recA1 cells by deoxyribonucleic acid (DNA) from the heterologous strain W23 was much lower than when a homologous donor DNA was used, the relative efficiency being different for different genetic markers. Because the frequency of recombination between linked markers is only slightly changed in recA1 recipients, and because markers of heterologous origin in DNA from intergenotic strains are not discriminated against strongly by recA1 recipients, it is concluded that neither a difference in length of synapsed DNA nor a difference in specificity for nucleotide sequence homology accounts for reduced transformation in recA1 cells. It is proposed that at some time between uptake and integration, heterologous DNA is inactivated by restriction, and that aberrant restriction of repaired regions may account for reduced transformation by homologous DNA.  相似文献   

12.
The development potential of transgenic adult cells after nuclear transfer (NT) was evaluated. Primary ovine granulosa cells (GC(S)) from a slaughter ovary were transfected with pEGFP-N1 plasmid DNA. Three G418-resistance cell lines (A2, B2 and B4) were used as donor cells in NT. A total of 162 NT blastocysts were then frozen with ethylene glycol solution and stored for five months before transplanted into recipients. Twenty-nine frozen thawed NT blastocysts were transferred into 15 synchronized recipients. Twin lambs (6.9%) derived from B2 line were delivered by cesarean section on day 143 but died after birth. A tumor consisting of lung tissues was found on the surface of left lung of the 4-kg lamb and histological analysis indicated that it resembles a hamartoma. DNA analysis confirmed that two lambs were genetically identical to B2 donor cells. Gene insertion and expression have been detected in fibroblasts cells derived from muscle tissues of the lambs. This study indicates that granulosa cell is a suitable cell type for producing transgenic animals by nuclear transfer. Offspring were produced after long-term storage of NT blastocysts.  相似文献   

13.
G Ia Sherman 《Genetika》1975,11(5):127-131
The efficiency of phages T4rIIB-638v+ and T4rIIB-638v- transformation by native and denatured DNA treated with UV, nitrous acid, hydroxylamine and visible light in the presence of methylene blue is studied. A greater transformation efficiency of UV-irradiated T4r+ phage native and denatured DNA was observed in the v+ recipient as compared with v- recipients. Denatured donor DNA treated with nitrous acid has higher transformation activity in spheroplasts infected with T4v+ phage than in those infected with T4v- phage. Native donor DNA, treated with methylene blue and visible light-irradiated, developed a decrease of the transformation activity in T4v- phage-infected spheroplasts as compared with T4v+ phage-infected spheroplasts. Hydroxylamine treatment of native and denatured donor DNA did not reveal any differences in the transforming activity for v+ and v- recipients. Denatured donor DNA was more resistant to the effect of hydroxylamine than native DNA.  相似文献   

14.
Summary The phenomenon of conjugation consists of many stages. The most important are: the formation of contacts between mating cells, the transfer of DNA from the donor to the recipient, and the integration of the transfered DNA fragments into the chromosome of the recipient. Only after completion of all these stages are recombinants formed. With the aid of specific inhibitiors (nalidixic acid, FUDR), thymine starvation, and use of special thermosensitive mutants it is possible to study the role of DNA synthesis during every stage of conjugation. It was demonstrated that the genetic transfer is due to semiconservative DNA-replication in the donor cell. The fragments of DNA transfered are synthesized in the period of mating by a special replication system (F-replicon). In case of T DNA S mutants unable to grow at 41°, the ability to synthesize DNA during conjugation is preserved.The inhibition of the DNA synthesis in the donor cell by poisons leads to complete inhibition of genetic transfer. The third stage — formation of recombinants requires DNA synthesis in the recipient cell and is inhibited by poisoning, thymine starvation or T DNA S mutations in the recipient. In cases where recombination is not involved (i.e. sexduction) the inhibition of DNA synthesis in the recipient has no significant effect.  相似文献   

15.
Deitz, William H. (Sterling-Winthrop Research Institute, Rensselaer, N.Y.), Thomas M. Cook, and William A. Goss. Mechanism of action of nalidixic acid on Escherichia coli. III. Conditions required for lethality. J. Bacteriol. 91:768-773. 1966.-Nalidixic acid selectively inhibited deoxyribonucleic acid (DNA) synthesis in cultures of Escherichia coli 15TAU. Protein and ribonucleic acid synthesis were shown to be a prerequisite for the bactericidal action of the drug. This action can be prevented by means of inhibitors at bacteriostatic concentrations. Both chloramphenicol, which inhibits protein synthesis, and dinitrophenol, which uncouples oxidative phosphorylation, effectively prevented the bactericidal action of nalidixic acid on E. coli. The lethal action of nalidixic acid also was controlled by transfer of treated cells to drug-free medium. DNA synthesis resumed immediately upon removal of the drug and was halted immediately by retreatment. These studies indicate that nalidixic acid acts directly on the replication of DNA rather than on the "initiator" of DNA synthesis. The entry of nalidixic acid into cells of E. coli was not dependent upon protein synthesis. Even in the presence of an inhibiting concentration of chloramphenicol, nalidixic acid prevented DNA synthesis by E. coli 15TAU.  相似文献   

16.
Donor and recipient counter selection was evaluated by selecting bacteria that received plasmid RP4 by conjugation on filters and in lake water microcosms. Three counter selection systems were compared; (i) Use of antibiotic-resistant recipients, (ii) use of an auxotrophic donor, and (iii) use of a donor with chromosomal suicide genes. Transfer efficiencies of transconjugants per recipient obtained with the three different counter selection systems in filter-matings were not significantly different. Some nalidixic acid-resistant recipients became partly sensitive to nalidixic acid after receiving the plasmid. Use of an auxotrophic donor was a feasible and easy way to recover indigenous transconjugants. A strain with two copies of the suicide gene gef was successfully eliminated in filter-matings, but elimination of the donor in microcosms by induction of the suicide genes did not succeed. Thus, this counter selection system was not usable in microcosm experiments. Received: 3 March 1998 / Accepted: 15 May 1998  相似文献   

17.
Infection of Escherichia coli with phage T4 gene 2am was used to transport 3H-labeled linear duplex DNA into cells to follow its degradation in relation to the cellular genotype. In wild-type cells, 49% of the DNA was made acid soluble within 60 min; in recB or recC cells, only about 5% of the DNA was made acid soluble. Remarkably, in recD cells about 25% of the DNA was rendered acid soluble. The DNA degradation in recD cells depended on intact recB and recC genes. The degradation in recD cells was largely decreased by mutations in recJ (which eliminates the 5' single-strand-specific exonuclease coded by this gene) or xonA (which abolishes the 3' single-strand-specific exonuclease I). In a recD recJ xonA triple mutant, the degradation of linear duplex DNA was roughly at the level of a recB mutant. Results similar to those with the set of recD strains were also obtained with a recC++ mutant (in which the RecD protein is intact but does not function) and its recJ, xonA, and recJ xonA derivatives. The observations provide evidence for a recBC-dependent DNA-unwinding activity that renders unwound DNA susceptible to exonucleolytic degradation. It is proposed that the DNA-unwinding activity causes the efficient recombination, DNA repair, and SOS induction (after application of nalidixic acid) in recD mutants. The RecBC helicase indirectly detected here may have a central function in Chi-dependent recombination and in the recombinational repair of double-strand breaks by the RecBCD pathway.  相似文献   

18.
Summary Transformation studies of the Challis strain of the H group of streptococcus were performed to further investigate the molecular basis of the deoxyribonucleic acid helping effect. Studies in the efficiency of transformation in the presence of non-transforming DNA support the notion that bacterial cells are indiscriminate in their uptake of donor DNA and that the helping effect occurs at a time when both transforming (T) and helping (H) DNAs have jointly entered the recipients. Furthermore, the ability of H DNA to promote transformation by T DNA is not directly altered by exposure of the former DNA to either UV-irradiation or nitrous acid. Nor does 5-bromouracil incorporation affect the capacity of H DNA to assist T DNA to transform a Challis cell.Increasing the concentration of denatured H DNA to a level that saturates the Challis bacteria in reaction mixtures produces a significant increase in the efficiency of genetic transformation. This increase in transformation frequency is greater with single DNA strands than with the corresponding amount of double strands.The extent of the helping effect with the Challis H DNA remains constant within an average molecular weight range of 3.5–7.0x106 daltons. In the case of heterologous E. coli DNA, however, the helping function in this range is more pronounced as a result of decreasing molecular weight, even though the net incorporation of T DNA remains unaffected. When the average M. W. is reduced below 2×106 a significant decline in the helping effect occurs in both cases.The effect of H DNA on the genetic transfer of two nonallelic antibiotic markers demonstrates that a saturating amount of non-transforming H DNA present in cells does not enhance the likelihood of co-integration of nonallelic factors. Evidence concerning the physiology of the competent cells and their ability to be helped reveals that the physiological basis of transformabilities and the helping capabilities of a culture are not identical.  相似文献   

19.
Both the soil isolate,Pseudomonas stutzeri JM300, and the marine isolate,Pseudomonas stutzeri strain ZoBell, have been shown previously to be naturally transformable. This study reports the detection of genetic exchange by natural transformation between these two isolates. Transformation frequency was determined by filter transformation procedures. Three independent antibiotic resistance loci were used as chromosomal markers to monitor this exchange event: resistance to rifampicin, streptomycin, and nalidixic acid. The maximum frequencies of transformation were on the order of 3.1 to 3.8×10-6 transformants per recipient; frequencies over an order of magnitude greater than those for spontaneous antibiotic resistance, although they are lower than those observed for soil: soil or marine: marine strain crosses. This exchange was inhibited by DNase I. Transformation was observed between soil and marine strains, both by filter transformation using purified DNA solutions and when transforming DNA was added in the form of viable donor cells. The results from this study support the close genetic relationship betweenP. stutzeri JM300 andP. stutzeri strain ZoBell. These results also further validate the utility ofP. stutzeri as a benchmark organism for modeling gene transfer by natural transformation in both soil and marine habitats.  相似文献   

20.
The efficiency of Tn1 transposition has been shown to increase considerably in course of bacterial conjugation. Usually, the frequency of Tn1 transposition from plasmid pSA2001, a derivative of RP4, into the chromosome never exceeded 0.1% per cell. Percentage of His+ transconjugants, marked by transposon Tn1 during conjugation between Hfr donor, carrying plasmid pSA2001, and auxotrophic recipient, was about 30%. Transposon Tn1 transfer into the recipient cells does not depend on the recA+ gene function in donor cells or on conjugative transfer of plasmid pSA2001. The transfer requires the recA+ gene function in recipients as well as the Hfr function in donor cells. Southern's blot-hybridization revealed the insertion of transposon Tn1 into the different sites of the chromosome of His+ transconjugants. The transposon inserted during conjugation retains the ability to potential further translocation into new sites on the chromosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号