共查询到20条相似文献,搜索用时 15 毫秒
1.
Lingor P Teusch N Schwarz K Mueller R Mack H Bähr M Mueller BK 《Journal of neurochemistry》2007,103(1):181-189
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth. 相似文献
2.
Martin Kanje 《Molecular neurobiology》1992,6(2-3):217-223
The methods used to maintain the vagus nerve from the adult rat in culture and how regeneration is studied in this preparation
are described. A hypothesis is presented on the triggering of the cell body reaction. It is suggested that this reaction is
initiated by proteins synthesized in nonneuronal cells at the site of a nerve lesion. These proteins, referred to as regenerins,
reach the nerve cell body by retrograde axonal transport, where they initiate the regeneration process. 相似文献
3.
处于衰老过程中的视神经呈现出年龄相关变化。主要包括视神经纤维髓鞘的老化崩解、纤维显著丢失、纤维直径减小及其对兴奋的传导速度减慢;视神经胶质细胞显著增生。视神经纤维衰老性改变可能导致视觉功能的衰退;胶质细胞的增生可能对维持视神经的形态及延缓视神经进一步衰老起保护作用。 相似文献
4.
Maria-Paz Villegas-Prez Manuel Vidal-Sanz Michael Rasminsky Garth M. Bray Albert J. Aguayo 《Developmental neurobiology》1993,24(1):23-36
To investigate the short-and long-term effects of axotomy on the survival of central nervous system (CNS) neurons in adult rats, retinal ganglion cells (RGCs) were labelled retrogradely with the persistent market diI and their axons interrupted in the optic nerve (ON) by intracranial crush 8 or 10 mm from the eye or in intraorbital cut 0.5 or 3 mm from the eye. Labelled RGCs were counted in flat-mounted retinas at intervals from 2 weeks to 20 months after axotomy. Two major patterns of RGC loss were observed: (1) an inital abrupt loss that was confined to the first 2 weeks after injury and was more severe when the ON was cut close to the eye; (2) a slower, persistent decline in RGC densities with one-half survival times that ranged from approximately 1 month after intraorbital ON cut to 6 months after intracranial ON crush. A small population of RGCs (approximately 5%) survived for as long as 20 months after intraorbital axotomy. The initial loss of axotomized RGCs presumably results from time-limited perturbations related to the position of the ON injury. A. persistent lack of terminal connectivity between RGCs and their targets in the brain may contribute to the subsequent, more protracted RGC loss, but the differences between intraorbital cut and intracranial crush suggest that additional mechanisms are involved. It is unclear whether the various injury-related processes set in motion in both the ON and the retina exert random effects on all RGCs or act preferentially on subpopulations of these neurons. © 1993 John Wiley & Sons, Inc. 相似文献
5.
V Pernet S Joly N Jordi D Dalkara A Guzik-Kornacka J G Flannery M E Schwab 《Cell death & disease》2013,4(7):e734
The use of the visual system played a major role in the elucidation of molecular mechanisms controlling axonal regeneration in the injured CNS after trauma. In this model, CNTF was shown to be the most potent known neurotrophic factor for axonal regeneration in the injured optic nerve. To clarify the role of the downstream growth regulator Stat3, we analyzed axonal regeneration and neuronal survival after an optic nerve crush in adult mice. The infection of retinal ganglion cells with adeno-associated virus serotype 2 (AAV2) containing wild-type (Stat3-wt) or constitutively active (Stat3-ca) Stat3 cDNA promoted axonal regeneration in the injured optic nerve. Axonal growth was analyzed in whole-mounted optic nerves in three dimensions (3D) after tissue clearing. Surprisingly, with AAV2.Stat3-ca stimulation, axons elongating beyond the lesion site displayed very irregular courses, including frequent U-turns, suggesting massive directionality and guidance problems. The pharmacological blockade of ROCK, a key signaling component for myelin-associated growth inhibitors, reduced axonal U-turns and potentiated AAV2.Stat3-ca-induced regeneration. Similar results were obtained after the sustained delivery of CNTF in the axotomized retina. These results show the important role of Stat3 in the activation of the neuronal growth program for regeneration, and they reveal that axonal misguidance is a key limiting factor that can affect long-distance regeneration and target interaction after trauma in the CNS. The correction of axonal misguidance was associated with improved long-distance axon regeneration in the injured adult CNS. 相似文献
6.
The p75 neurotrophin receptor (p75NTR) is known to transduce the signal from some myelin-associated axon growth inhibitors, including Nogo and myelin-associated glycoprotein. As ephrin-B3, a member of the ephrin family, is also expressed in myelin and inhibits axon growth, the purpose of this study was to assess the possible involvement of p75NTR in ephrin-B3 signaling. Here, we report that p75NTR is required for the inhibitory effect of ephrin-B3 on neurite growth
in vitro. While ephrin-B3 inhibited neurite elongation of embryonic cortical neurons, the neurons with p75NTR knockdown or with EphA4 knockdown were less sensitive to ephrin-B3. Although no direct interaction of p75NTR with ephrin-B3 was observed, Pep5, a peptide that specifically inhibits RhoA activation mediated by p75NTR, reduced the effect of ephrin-B3. Therefore, p75NTR functions as a signal transducer for ephrin-B3. Moreover, axonal regeneration
in vivo
was induced by Pep5 application after optic nerve crush injury in mice. Thus, Pep5 is a promising agent that contributes to axonal regeneration in the central nervous system. 相似文献
7.
Yoshiki Koriyama Rie Yasuda Keiko Homma Kazuhiro Mawatari Mikiko Nagashima Kayo Sugitani Toru Matsukawa Satoru Kato 《Journal of neurochemistry》2009,110(3):890-901
Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS and PNS neurons, respectively, after nerve lesioning. We investigated the role of NO signaling on optic nerve regeneration in the goldfish ( Carassius auratus ). NADPH diaphorase staining revealed that nitric oxide synthase (NOS) activity was up-regulated primarily in the retinal ganglion cells (RGCs) 5–40 days after axotomy. Levels of neuronal NOS (nNOS) mRNA and protein also increased in the RGCs alone during this period. This period (5–40 days) overlapped with the process of axonal elongation during regeneration of the goldfish optic nerve. Therefore, we evaluated the effect of NO signaling molecules upon neurite outgrowth from adult goldfish axotomized RGCs in culture. NO donors and dibutyryl cGMP increased neurite outgrowth dose-dependently. In contrast, a nNOS inhibitor and small interfering RNA, specific for the nNOS gene, suppressed neurite outgrowth from the injured RGCs. Intra-ocular dibutyryl cGMP promoted the axonal regeneration from injured RGCs in vivo . None of these molecules had an effect on cell death/survival in this culture system. This is the first report showing that NO-cGMP signaling pathway through nNOS activation is involved in neuroregeneration in fish CNS neurons after nerve lesioning. 相似文献
8.
《Developmental neurobiology》2017,77(10):1206-1220
Adult neurogenesis occurs more commonly in teleosts, represented by zebrafish, than in mammals. Zebrafish is therefore considered a suitable model to study adult neurogenesis, for which the regulatory molecular mechanisms remain little known. Our previous study revealed that neuroepithelial‐like neural stem cells (NSCs) are located at the edge of the dorsomedial region. We also showed that Notch signaling inhibits NSC proliferation in this region. In the present study, we reported the expression of Wnt and Shh signaling components in this region of the optic tectum. Moreover, inhibitors of Wnt and Shh signaling suppressed NSC proliferation, suggesting that these pathways promote NSC proliferation. Shh is particularly required for maintaining Sox2‐positive NSCs. Our experimental data also indicate the involvement of these signaling pathways in neural differentiation from NSCs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1206–1220, 2017 相似文献
9.
SH Chew 《Biotechnic & histochemistry》2013,88(5-6):177-183
The phagocytic activity of neuroglial cells in adult feline degenerating optic nerve was investigated by immunocytochemistry at both light and electron microscopy levels. Degeneration was initiated by unilateral eye enucleation and the segment distal to the transection showing true Wallerian degeneration was examined. Following enucleation, twelve adult domestic cats were examined over a period of seven to 215 days. All cases showed slow clearance of myelin debris and absence of proliferating monocytes throughout the post-enucleation period. All phagocytic cells present were neuroglial cells, and many of these cells expressed oligodendroglial antigens. These findings demonstrate the persistence of an active population of oligodendrocytes that might play an additional functional role during Wallerian degeneration of feline optic nerve. 相似文献
10.
11.
S. Čech 《Cell and tissue research》1973,140(1):91-100
Summary Distribution of cholinesterase-containing nerve fibres on blood vessels in the lungs of rats, mice, rabbits, guinea pigs, cats, dogs, and rhesus monkeys has been studied with the thiocholine method modified by Coupland and Holmes and with the direct-coloring method according to Karnovsky and Roots. The presence of acetylcholinesterase positive nerve fibres on the pulmonary arteries has been established only in four species of the studied animals, namely the cat, the dog, the rhesus monkey and the rabbit. These nerves form d distinct plexus on the border between the media and adventitia. In the thick walled perihilar branches of the pulmonary artery of the rabbit the nerve fibres penetrate—as a rule—into the outer half of the media. Despite many times repeated experiments and careful investigations no nerve fibres have been found on the intrapulmonary branches of the blood vessels in the lungs of rats, mice, and guinea pigs. In the walls of the pulmonary veins, with the exception of the pulmonary veins in the rat and the mouse, cholinesterase fibres have been identified only seldom. Acetylcholinesterase nerve fibres in medio-adventitial localization have also been found in the walls of bronchial arterioles, this being the case in all the species under study. Bronchial veins do not exhibit any nerve fibres. The distribution of the acetylcholinesterase-containing nerve fibres on the pulmonary arteries is different from species to species. 相似文献
12.
Ming Liu Pei Li Yuanyuan Jia Qingjun Cui Kexin Zhang Jingjing Jiang 《International journal of biological sciences》2022,18(8):3435
Peripheral nerve injury (PNI) may lead to disability and neuropathic pain, which constitutes a substantial economic burden to patients and society. It was found that the peripheral nervous system (PNS) has the ability to regenerate after injury due to a permissive microenvironment mainly provided by Schwann cells (SCs) and the intrinsic growth capacity of neurons; however, the results of injury repair are not always satisfactory. Effective, long-distance axon regeneration after PNI is achieved by precise regulation of gene expression. Numerous studies have shown that in the process of peripheral nerve damage and repair, differential expression of non-coding RNAs (ncRNAs) significantly affects axon regeneration, especially expression of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). In the present article, we review the cellular and molecular mechanisms of axon regeneration after PNI, and analyze the roles of these ncRNAs in nerve repair. In addition, we discuss the characteristics and functions of these ncRNAs. Finally, we provide a thorough perspective on the functional mechanisms of ncRNAs in nervous injury repair, and explore the potential these ncRNAs offer as targets of nerve injury treatment. 相似文献
13.
SH Chew 《Biotechnic & histochemistry》2004,79(5):177-183
The phagocytic activity of neuroglial cells in adult feline degenerating optic nerve was investigated by immunocytochemistry at both light and electron microscopy levels. Degeneration was initiated by unilateral eye enucleation and the segment distal to the transection showing true Wallerian degeneration was examined. Following enucleation, twelve adult domestic cats were examined over a period of seven to 215 days. All cases showed slow clearance of myelin debris and absence of proliferating monocytes throughout the post-enucleation period. All phagocytic cells present were neuroglial cells, and many of these cells expressed oligodendroglial antigens. These findings demonstrate the persistence of an active population of oligodendrocytes that might play an additional functional role during Wallerian degeneration of feline optic nerve. 相似文献
14.
15.
16.
Liu ZW Matsukawa T Arai K Devadas M Nakashima H Tanaka M Mawatari K Kato S 《Journal of neurochemistry》2002,80(5):763-770
The goldfish optic nerve can regenerate after injury. To understand the molecular mechanism of optic nerve regrowth, we identified genes whose expression is specifically up-regulated during the early stage of optic nerve regeneration. A cDNA library constructed from goldfish retina 5 days after transection was screened by differential hybridization with cDNA probes derived from axotomized or normal retina. Of six cDNA clones isolated, one clone was identified as the Na,K-ATPase catalytic subunit alpha3 isoform by high- sequence homology. In northern hybridization, the expression level of the mRNA was significantly increased at 2 days and peaked at 5-10 days, and then gradually decreased and returned to control level by 45 days after optic nerve transection. Both in situ hybridization and immunohistochemical staining have revealed the location of this transient retinal change after optic nerve transection. The increased expression was observed only in the ganglion cell layer and optic nerve fiber layer at 5-20 days after optic nerve transection. In an explant culture system, neurite outgrowth from the retina 7 days after optic nerve transection was spontaneously promoted. A low concentration of ouabain (50-100 nm ) completely blocked the spontaneous neurite outgrowth from the lesioned retina. Together, these data indicate that up-regulation of the Na,K-ATPase alpha3 subunit is involved in the regrowth of ganglion cell axons after axotomy. 相似文献
17.
Fujitani M Yamagishi S Che YH Hata K Kubo T Ino H Tohyama M Yamashita T 《Journal of neurochemistry》2004,91(3):737-744
In axotomized adult neurons, a process of axonal regrowth and re-establishment of the neuronal function has to be activated. Developmentally regulated factors may be reactivated during neuronal regeneration. Here we identify a gene, previously designated P311, that is up-regulated in the axotomized facial motoneurons. Ectopically expressed P311 localizes in the cytoplasm and the nucleus. Over-expression of P311 induces p21(WAF1/Cip1) expression, leading PC12 cells to differentiate and to have neuron-like morphologies. Adenovirus-mediated P311 gene transfer promotes neurite outgrowth of postnatal dorsal root ganglion neurons and embryonic hippocampal neurons in vitro. This effect is abolished by the activation of Rho kinase. P311 also facilitates nerve regeneration following facial nerve injury in vivo. Our data provide evidence that genes involved in the differentiation process contribute to the regeneration of injured mature neurons, and may provide a practical molecular target. 相似文献
18.
Structural characteristics of glycosaminoglycans (GAGs) derived from axonally transported proteoglycans (PGs) were compared in 21 day regenerating and intact goldfish optic tracts. Twenty one days following unilateral optic nerve crushes, fish received intraocular injections of35SO4. Eight hours post injection, tracts were removed and the35SO4-labeled GAGs, chondroitin sulfate (CS) and heparan sulfate (HS), isolated. The HS from regenerating optic tracts had a DEAE elution profile indicative of decreased charge density, while heparitinase treatment of HS followed by Sephadex G50 analysis of the resulting fragments showed a change in the elution pattern, suggesting reduced overall sulfation. HPLC analysis of HS disaccharides revealed a difference in the sulfation pattern of regenerating tract HS, characterized by the reduced presence of tri-sulfated disaccharides. Other structural features, such as the sizes of CS and HS, and the sulfation of CS, showed no changes during regeneration. These results indicate that changes in the structure of axonally transported HS accompany regeneration of goldfish optic axons. 相似文献
19.
20.
Sophie Vanhunsel Steven Bergmans An Beckers Isabelle Etienne Tine Van
Bergen Lies De Groef Lieve Moons 《Aging cell》2022,21(1)
As the mammalian central nervous system matures, its regenerative ability decreases, leading to incomplete or non‐recovery from the neurodegenerative diseases and central nervous system insults that we are increasingly facing in our aging world population. Current neuroregenerative research is largely directed toward identifying the molecular and cellular players that underlie central nervous system repair, yet it repeatedly ignores the aging context in which many of these diseases appear. Using an optic nerve crush model in a novel biogerontology model, that is, the short‐living African turquoise killifish, the impact of aging on injury‐induced optic nerve repair was investigated. This work reveals an age‐related decline in axonal regeneration in female killifish, with different phases of the repair process being affected depending on the age. Interestingly, as in mammals, both a reduced intrinsic growth potential and a non‐supportive cellular environment seem to lie at the basis of this impairment. Overall, we introduce the killifish visual system and its age‐dependent regenerative ability as a model to identify new targets for neurorepair in non‐regenerating individuals, thereby also considering the effects of aging on neurorepair. 相似文献