首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ was introduced into fresh and ATP-depleted chicken erythrocytes through the aid of the ionophore A-23187.Intracellular Ca2+ (10–40 mM) induced fusion in ATP-depleted cells after 30–60 min incubation at 37°C, but not in fresh cells. Fresh cells underwent a higher degree of haemolysis than ATP-depleted cells after accumulation of Ca2+. Uptake of Ca2+ was the same in these two systems.Intracellular Ca2+ induced rearrangement of intramembranous particles, as revealed by freeze-etching studies. The intramembranous particles in the protoplasmic face of fractured membranes obtained from fresh cells incubated with 1 mM of Ca2+ were more scattered and their density was lower than in control cells. Incubation with higher concentrations of Ca2+ (10–40 mM) induced transient changes in the intramembranous particles' density with the appearance of protrusions and depressions on the protoplasmic and exoplasmic faces of the fractured membranes, respectively. These effects were reversible upon removal of Ca2+ by washing the cells with ethyleneglycol bis(α-aminoethylether)-N,N′-tetraacetic acid; rearrangement of intramembranous particles was less evident after accumulation of Ca2+ in ATP-depleted cells, whose fractured membranes did not contain any protrusions or depressions.Transferring Ca2+-loaded cells to the cold caused the formation of large smooth areas devoid of intramembranous particles in the protoplasmic face of the fractured membranes.Cells containing Ca2+ appeared spherical, and removal of Ca2+ restored the normal oval shape of chicken erythrocytes.  相似文献   

2.
In vitro aged sheep erythrocytes and sheep erythrocyte ghosts spontaneously release vesicles that consist of long protrusions affixed to flattened headlike structures. The intramembranous particles seen on the protoplasmic face of freeze fracture electron micrographs of vesicle protrusions are arranged in paired particle rows. On the equivalent fracture face of headlike structures, the particle density is low; if particles are present, they are clustered along the rim of the flattened headlike structure and at the junction with the protrusion. The released vesicles are depleted of the intramembranous particles seen on the exoplasmic face of ghost but retain almost exclusively particles of the protoplasmic face. Correspondingly, the exoplasmic face of ghosts that have released vesicles reveals a 28 percent higher density of intramembranous particles than that of fresh ghosts. Purified vesicles are depleted of spectrin but retain integral membrane proteins, with one of an apparent mol wt of 160,000 accounting for nearly 50 percent of the total protein (Lutz, H.U.,R. Barber, and R.F. McGuire. 1976. J. Biol. Chem. 251:3500-3510). When vesicles are modified with the cleavable cross-linking reagent [(35)S]dithiobis (succinimidyl propionate)at 0 degrees C, the 160,000 mol wt protein is rapidly converted to disulfide-linked dimers and higher oligomers. Exposure of intact ghosts to the reagent in the same way fails to yield equivalent polymers. A comparison of the morphological and biochemical aspects of ghosts and vesicles suggest that a marked rearrangement of membrane proteins accompanies the supramolecular redistribution of intramembranous particles during spontaneous vesiculation. The results also suggest that the paired particles of the protoplasmic face of vesicle protrusions are arranged in paired helices and contain the 160,000 mol wt protein as dimers.  相似文献   

3.
The effect of the local anesthetic dibucaine on the membrane ultrastructure of sterol-manipulated Tetrahymena pyriformis (NT-1 strain) was studied by freeze-fracture electron microscopy. Dibucaine-treated, ergosterol-replaced Tetrahymena cells had marked alterations in their plasma membranes. IMP-free small depressions (exoplasmic fracture face) and protrusions (protoplasmic fracture face) were formed on the plasma membranes which was in contact with the outer alveolar membrane. In addition, large IMP-free surface "blebs" covered with hexagonally-arranged depressions and protrusions appeared on both the plasma and outer alveolar membranes. These "blebs" were pinched off when the membranes were severely affected. Our previous study (28) demonstrated that the plasma membrane of dibucaine-treated native Tetrahymena cells that contain tetrahymanol showed vertical displacement of its intramembranous particles and that subsequently a smooth, flat surface appeared. Therefore, the structural changes in ergosterol-replaced membranes produced by dibucaine differ strikingly from changes in the native membranes. The remarkable difference in the ultrastructural deformation of the plasma membrane probably is due to a difference in the membrane lipid composition induced by sterol-manipulation.  相似文献   

4.
T Sekiya  K Yano  Y Nozawa 《Sabouraudia》1982,20(4):303-311
Freeze-fracture electron microscopy of the plasma membranes of Candida albicans yeast cells and red blood cells treated with amphotericin methyl ester and amphotericin B showed that amphotericin B (50 micrograms ml-1) caused extreme aggregation of intramembranous particles on the protoplasmic fracture face of the C. albicans membrane, and a marked reduction of the density of intramembranous particles. On the other hand, the rearrangement of intramembranous particles induced by amphotericin methyl ester (50 micrograms ml-1) produced elevations of the particle-free membrane domains toward the outside of the cells, so that the particles were aggregated in linear furrows surrounding these elevations on the protoplasmic fracture face, and the corresponding ridges on the exoplasmic fracture face. The density of intramembranous particles was greatly reduced on the protoplasmic fracture face. Both polyenes produced only small changes in the erythrocyte membranes at the same concentration. These results suggest that amphotericin methyl ester affects the ergosterol-containing membranes more than amphotericin B, and that ergosterol has a higher sensitivity for these two polyene antibiotics than cholesterol.  相似文献   

5.
1. Ca2+ (0.4-16 mM) had no detectable action on the agglutination of hen erythrocytes by Sendai virus. 2. Pretreatment of the cells with Ca2+ (0.1-8 mM) in the presence of the bivalent cation ionophore A23187 led, however, to a significant decrease in the subsequent agglutination of the cells by the virus. 3. It thus appears that the entry of Ca2+ into the interior of these cells decreases cellular agglutination by Sendai virus; possible interpretations of this phenomenon are discussed in terms of the movement of intramembranous particles. 4. With a small number of virions, maximum cell fusion by Sendai virus occurred in the presence of EGTA [ethanedioxybis(ethylamine)tetra-acetate]. 5. Virus-induced cell fusion was significantly decreased by Ca2+, even at a concentration of 0.2 mM; it is suggested that this may result from diminished interactions between virus particles and erythrocyte membranes.  相似文献   

6.
SDS-purified porcine kidney (Na+ + K+)-ATPase was studied by thin-section and freeze-etch electron microscopy. Freeze-fracturing of resealed membrane fragments shows no difference in the distribution of intramembranous particles of approx. 9.0 nm in diameter between convex and concave fracture faces. However, two types of convex face are found: FA, which shows a rather smooth background with many intramembranous particles, and FB, which shows a textured background with very few or no intramembranous particles. Etching the fractured samples further reveals that FA faces are covered with many intramembranous particles, while the etched external faces (EA) are either irregularly granulated or reveal many particles half the size of intramembranous particles. FB faces are covered with distinct pits of 9 nm or larger. The etched external surfaces (EB) are covered with many particles of intramembranous particle size. These results suggest that there are two vesicle orientations in our resealed purified membrane preparation: right-side-out, as in vivo, and inside-out. The majority of the protein mass is distributed only on one side of the membranes. Right-side-out resealed membrane vesicles after fracturing and etching show particulated FA convex fracture faces and irregularly granulated or smooth etched EA surfaces, indicating that the FA face is the protoplasmic fracture face and that the majority of the protein mass of the (Na+ + K+)-ATPase is located on the cytoplasmic half of the membrane.  相似文献   

7.
Freeze-fracture study of Blastocystis hominis   总被引:1,自引:0,他引:1  
The ultrastructure of Blastocystis hominis was investigated by the freeze-fracture method. Freeze-fracture replicas of the membranes of B. hominis and its organelles were studied with special regard to the density and distribution of the intramembranous particles (IMP's). On all membrane replicas, the concentration of IMP's on the protoplasmic face (P face) invariably was greater than on the exoplasmic face (E face). On the P face, IMP's were heterogeneously distributed in dense aggregates, alternating with particle-free, smooth surface areas. Occasionally, small depressions and protrusions were observed in these areas. On the membrane of the central vacuole, invaginations into the vacuole were frequently observed within the smooth surface regions. Since most of the granules in the central vacuoles had no IMP's, it seems likely that the intervacuolar granules were formed from these invaginations of the vacuole membrane. The width of the intermembrane space between the inner and outer membranes of the nuclear envelope was uneven, with regions of relative narrowness interspersed with regions of expansion. Nuclear pores were localized within the narrow portions of this space. A nucleus, apparently in the process of dividing, was observed enclosed within an intact outer membrane. Division of the outer membrane would then result in the formation of two discrete nuclei.  相似文献   

8.
About 20 and 43% of the total membrane phospholipids are hydrolized in fresh rat erythrocytes by treatment with phospholipase C (Bacillus cereus), or both sphingomyelinase and phospholipase C, respectively, without causing cell lysis. Treatment of ATP-depleted cells with phospholipase C alone results in 50% hydrolysis and extensive lysis. Depletion of ATP causes a marked increase in the aggregation of intramembranous particles accompanied by a similar increase in the smooth area between the particle clusters as revealed by the freeze-etch technique. Such changes are not induced by extensive phospholipid hydrolysis in absence of cell lysis in fresh cells.Based on these and additional data, it is suggested that the membrane phospholipid organization can be divided into 3 types: phospholipids exposed to phospholipase C; phospholipids protected against phospholipase C by presence of sphingomyelin; phospholipids which can be exposed following alteration of the proteinlipid interactions. Such alterations which might be induced by a variety of means, including ATP depletion, might result in clustering of intramembranous particles and increase of the free lipid bilayer phase of the membrane.  相似文献   

9.
Effects of isotonic solutions of polyethylene (glycol) 1500 (PEG-1500) and sucrose on Ca2+ influx into ATP-depleted red blood cells were studied using the Ca2+ -sensitive fluorescent dye fura-2AM. When incubated in isotonic low ionic strength media (containing 2 mM CaCl2 in addition to sucrose and PEG-1500), the initial rate of Ca2+ influx was higher than that for the cells in physiological (normal ionic strength) medium. After 20 minutes of incubation in the PEG-1500-containing solution, a 10-fold increase of Ca2+ influx was observed, whereas in the sucrose medium the rate of Ca2+ influx decreased compared to that in physiological medium. 1H-NMR data provided no evidence of direct interaction between PEG-1500 and the erythrocyte membrane. Moreover, PEG-1500 did not affect lipid peroxidation (LPO) induction in erythrocyte membranes. We propose that a change in the hydrogen environment of Ca2+ -ATPase of the erythrocytes suspended in the PEG-1500 solution is the primary cause of altered Ca2+ homeostasis in these cells. The activation of the Ca2+ -ATP-ase in sucrose medium may result in an incomplete suppression of the Ca2+-pump activity in ATP-depleted cells, which is accelerated when calmodulin binds with the Ca2+-ATP-ase under the conditions of rapid Ca2+ accumulation.  相似文献   

10.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

11.
Effects of lanthanum on calcium-dependent phenomena in human red cells.   总被引:4,自引:0,他引:4  
Lanthanum (0.25 mM) does not penetrate into fresh or Mg2+-depleted cells, whereas it does into ATP-depleted or ATP + 2,3-diphosphoglycerate-depleted cells, into cells containing more than 3 mM calcium, or cells stored for more than 4 weeks in acid/citrate/dextrose solution. In fresh cells loaded with calcium, extracellular lanthanum blocks the active Ca2+-efflux completely and inhibits (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity to about 50%. In Mg2+-depleted cells Ca2+-Ca2+ exchange is inhibited by lanthanum. Ca2+-leak is unaffected by lanthanum up to 0.25 mM concentration; higher lanthanum concentrations reduce leak rate. In NaCl medium Ca2+-leak +/ S.D. amounts to 0.28 +/ 0.08 mumol/1 of cells per min, whereas in KC1 medium to 0.15 +/ 0.04 mumol/1 of cells per min at 2.5 mM [Ca2+]e and 0.25 mM [La3+]e pH 7.1. Lanthanum inhibits Ca2+-dependent rapid K+ transport in ATP-depleted and propranolol-treated red cells, i.e. whenever intracellular calcium is below a critical level. The inhibition of the rapid K+ transport can be attributed to protein-lanthanum interactions on the cell surface, since lanthanum is effectively detached from the membrane lipids by propranolol. Lanthanum at 0.2--0.25 mM concentration has no direct effect on the morphology of red cells. The shape regeneration of Ca2+-loaded cells, however, is blocked by lanthanum owing to Ca2+-pump inhibition. Using lanthanum the transition in cell shape can be quantitatively correlated to intracellular Ca2+ concentrations.  相似文献   

12.
About half of the sphingomyelin content of fresh and ATP-depleted chicken erythrocytes is hydrolysed by sphingomyelinase. Removal of spingomyelin exposes the rest of the membrane phospholipids to hydrolysis by phospholipase C only in ATP-depleted but not in fresh cells. Addition of both sphinogomyelinase and phospholipase C to ATP-depleted cells causes about 60-70 percent hydrolysis of the total phospholipids accompanied by extensive (90 percent) hemolysis. The phospholipids of toad erythrocytes are partially available to phospholipase C activity in fresh cells (17-25 percent hydrolysis) without prior sphingomyelinase treatment. However, in ATP-depleted toad cells phospholipase C hydrolyses 66 percent of phospholipids and causes extensive lysis. Treatment of either fresh or ATP-depleted toad erythrocytes by sphingomyelinase together with phospholipase C induces hydrolysis of most of the phospholipds with complete lysis. Restoration of ATP to ATP-depleted cells endows them with resistance to the attack of phospholipase C. The correlation between changes in ATP level and membrane organization as revealed by increased susceptibility toward phospholipases is discussed.  相似文献   

13.
The ultrastructure of Blastocystis hominis was investigated by the freeze-fracture method. Freeze-fracture replicas of the membranes of B. hominis and its organelles were studied with special regard to the density and distribution of the intramembranous particles (IMF's). On all membrane replicas, the concentration of IMF's on the protoplasmic face (P face) invariably was greater than on the exoplasmic face (E face). On the P face, IMP's were heterogeneously distributed in dense aggregates, alternating with particle-free, smooth surface areas. Occasionally, small depressions and protrusions were observed in these areas. On the membrane of the central vacuole, invaginations into the vacuole were frequently observed within the smooth surface regions. Since most of the granules in the central vacuoles had no IMF's, it seems likely that the intervacuolar granules were formed from these invaginations of the vacuole membrane. The width of the intermembrane space between the inner and outer membranes of the nuclear envelope was uneven, with regions of relative narrowness interspersed with regions of expansion. Nuclear pores were localized within the narrow portions of this space. A nucleus, apparently in the process of dividing, was observed enclosed within an intact outer membrane. Division of the outer membrane would then result in the formation of two discrete nuclei.  相似文献   

14.
Human erythrocytes were fused by incubation with 0.5-2 mM-chlorpromazine hydrochloride at pH 6.8-7.6. Fusogenic preparations of chlorpromazine were cloudy suspensions of microdroplets, and below pH 6.8 chlorpromazine gave clear solutions that were inactive. Unlike control cells, the lateral mobility of the intramembranous particles of the PF-fracture face of chlorpromazine-treated cells was relatively unrestricted, since the particles were partly clustered at 37 degrees C and they exhibited extensive cold-induced clustering. Ca2+ stimulated fusion, but fusion was only very weakly inhibited by EGTA (10 mM) and by N-ethylmaleimide (50 mM); pretreatment of the cells with Tos-Lys-CH2Cl (7-amino-1-chloro-3-L-tosylamidoheptan-2-one) (7.5 mM) markedly inhibited fusion. Changes in the membrane proteins of erythrocytes fused by chlorpromazine, before and after treatment with chymotrypsin to remove band 3 protein, were investigated. The several observations made indicate that the Ca2+-insensitive component of fusion is associated with degradation of ankyrin (band 2.1 protein) to band 2.3-2.6 proteins and to smaller polypeptides by a serine proteinase that is inhibited by Tos-Lys-CH2Cl, and that the component of fusion inhibited by EGTA and N-ethylmaleimide is associated with degradation of band 3 protein to band 4.5 protein by a Ca2+-activated cysteine proteinase. Proteolysis of ankyrin appeared to be sufficient to permit the chlorpromazine-induced fusion of human erythrocytes, but fusion occurred more rapidly when band 3 protein was also degraded in the presence of Ca2+. Since other cells have structures comparable with the spectrin-actin skeleton of the erythrocyte membrane, the observations reported may be relevant to the initiation of naturally occurring fusion reactions in biomembranes. It is also suggested that, should polypeptides with fusogenic properties be produced from integral and skeletal membrane proteins by endogenous proteolysis, their formation would provide a general mechanism for the fusion of lipid bilayers in biomembrane fusion reactions.  相似文献   

15.
When human erythrocyte membranes were treated with perfringolysin O (Clostridium perfringens theta-toxin) and examined by electron microscopy after freeze-fracture, two ultrastructural alterations were observed in fracture faces of membrane. (1) A random aggregation of intramembranous particles was seen in the fracture face of the protoplasmic half (PF face) of all membranes treated with the toxin, even if at a low concentration (40 hemolytic units/ml). On the other hand, the aggregation in the fracture face of the exoplasmic half (EF face) was observed only in membranes treated with a high concentration (3300 hemolytic units/ml) for 2 h. (2) Round protrusions and "cavities" with 30 nm in diameter were visible in EF and PF faces of membranes treated with a high concentration, respectively. These structures were always protruded toward cytoplasmic side, but did not appear to form holes through the membrane. Ring and arc shaped structures with a dark center of 26 nm and a distinct border of 5 nm in width were observed when the toxin alone was negatively stained at a very high concentration (170,000 hemolytic units/ml). These structures were also produced in the presence of cholesterol even if the toxin concentration was low.  相似文献   

16.
Incubation of hen erythrocytes with Ca2+ and the bivalent-cation ionophore A23187 induced slight cell fusion in 1 h at 37 degrees C, and extensive fusion during a subsequent 15 min at 47 degrees C. Redistributions of intramembranous particles were observed, possibly involving interactions between Ca2+ and phospholipids, which are discussed in relation to molecular mechanimss of cell fusion.  相似文献   

17.
When human erythrocyte membranes were treated with perfringolysin O (Clostridium perfringens θ-toxin) and examined by electron microscopy after freeze-fracture, two ultrastructural alterations were observed in fracture faces of membrane. (1) A random aggregation of intramembranous particles was seen in the fracture face of the protoplasmic half (PF face) of all membranes treated with the toxin, even if at a low concentration (40 hemolytic units/ml). On the other hand, the aggregation in the fracture face of the exoplasmic half (EF face) was observed only in membranes treated with a high concentration (3300 hemolytic units/ml) for 2 h. (2) Round protrusions and ‘cavities’ with 30 nm in diameter were visible in EF and PF faces of membranes treated with a high concentration, respectively. These structures were always protruded toward cytoplasmic side, but did not appear to form holes through the membrane.Ring and are shaped structures with a dark center of 26 nm and a distinct border of 5 nm in width were observed when the toxin alone was negatively stained at a very high concentration (170 000 hemolytic units/ml). These structures were also produced in the presence of cholesterol even if the toxin concentration was low.  相似文献   

18.
Summary Freeze-fracture preparations of protoplasts isolated from cell suspension cultures and leaf mesophyll tissue have been examined by transmission electron microscopy. During the first 72 hours of cell wall regeneration, the 8–10nm intramembraneous particles were randomly distributed on both the protoplasmic and extracellular fracture faces of the plasma membranes of protoplasts frozen and fractured in the culture medium without glutaraldehyde fixation or cryoprotection. Incubation of living protoplasts in culture medium containing 20% v/v glycerol as cryoprotectant prior to freezing without fixation caused deformation of the plasma membrane in the form of protrusions accompanied by particle aggregation on the protoplasmic fracture face of the membrane. Intramembraneous particle aggregation was not observed in protoplasts fixed in glutaraldehyde prior to incubation in medium containing glycerol. The aggregation of particles into hexagonal close packed arrays and elongate chains is discussed in relation to a previous report in the literature of the possible involvement of intramembraneous particle complexes in microfibril formation by isolated higher plant protoplasts.  相似文献   

19.
Intracellular Ca2+ levels in human erythrocytes were increased by incubating them with variable concentrations of Ca2+ in the presence of ionophore A23187. Experiments were done to confirm that the Ca2+ loading did induce changes in the cell shape and membrane protein composition. The effect of the increased cytoplasmic Ca2+ levels on the membrane phospholipid organization was analysed using bee venom and pancreatic phospholipases A2, Merocyanine 540 and fluorescamine as the external membrane probes. About 20% phosphatidylethanolamine (PE) and 0% phosphatidylserine (PS) were hydrolysed by the phospholipases in intact control cells, whereas in identical conditions these enzymes readily degraded, 20-30% PE and 7-30% PS, in Ca2+-loaded erythrocytes, depending on the cytoplasmic Ca2+ concentration. Also, Merocyanine 540 failed to stain the fresh or control erythrocytes, but it labeled the cells loaded with Ca2+. Furthermore, fluorescamine labeled approx. 20% PE in fresh or control erythrocytes while in identical conditions, significantly higher amounts of PE were modified in intact Ca2+-loaded cells. These results demonstrate that Ca2+ loading in human erythrocytes leads to loss of the transbilayer phospholipid asymmetry, and suggest that, together with spectrin, polypeptides 2.1 and 4.1 may also play an important role in maintaining the asymmetric distribution of various phospholipids across the erythrocyte membrane bilayer.  相似文献   

20.
T Shimizu 《Cryobiology》1988,25(1):38-43
Echinocytes appeared in thawed-washed erythrocytes previously frozen with glycerol in response to Ca2+ plus divalent cation ionophore A23187. The occurrence of echinocytes depended on the concentrations of Ca2+. When the incidence of echinocytes was plotted against the log dose of Ca2+, a sigmoidal curve was obtained and fitted the probit plots well. ED50 values for frozen-thawed and fresh erythrocytes were 38 +/- 10 and 40 +/- 9 microM (mean +/- SD) CaCl2, respectively. The effects of divalent cations, such as Co2+, Mn2+, Ba2+, and Mg2+, on echinocyte formation were examined. Increasing Mg2+ concentrations only shifted the dose-response curve parallel to the right side. However, in cryopreserved erythrocytes in the medium with high Mg2+ content, the degree of the shift was less than that of fresh erythrocytes. ED50 values in 2 mM Mg2+ medium for frozen-thawed and fresh erythrocytes were 62 +/- 15 and 130 +/- 12 microM CaCl2, respectively. Under this condition, the lowest adenosine triphosphate (ATP) levels of about 60% of the control level were established at Ca2+ concentrations in cryopreserved erythrocytes lower than those in fresh ones. Then the utilization of cellular ATP decreased with echinocyte formation. These results indicate that futile hydrolysis of ATP in cryopreserved erythrocytes in high Mg2+ media may reduce Ca2+ excretion by activation of the Ca2+ pump in plasma membranes, resulting in echinocyte formation in low Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号