首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Possible functions of previously described genes RAD29 and RAD31 involved in DNA repair were determined by analyzing the interaction between these genes and mutations in the genes of the three basic epistatic groups: RAD3 (nucleotide excision repair), RAD6 (error-prone mutagenic repair system), RAD52 (recombination repair pathway), and also the apn1 mutation that blocks the synthesis of major AP endonuclease (base excision repair). The results obtained in these studies and the estimation of the capability for excision repair of lesions induced by 8-metoxipsoralen and subsequent exposure to long-wavelength UV light in mutants for these genes led to the assumption that the RAD29 and RAD31 genes are involved in yeast DNA repair control.  相似文献   

2.
M. Saparbaev  L. Prakash    S. Prakash 《Genetics》1996,142(3):727-736
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3Δ mutation has an effect on recombination similar to that of the rad1Δ and rad10Δ mutations. The msh2Δ mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAD1-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process.  相似文献   

3.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

4.
5.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

6.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

7.
The Saccharomyces cerevisiae Rad 1 and Rad 10 proteins are required for damage-specific incision during nucleotide excision repair and also for certain mitotic recombination events between repeated sequences. Previously we have demonstrated that Rad1 and Rad10 form a specific complex in vitro. Using the ‘two-hybrid’ genetic assay system we now report that Rad1 and Rad10 proteins are subunits of a specific complex in the cell nucleus. The Rad10-binding domain of Rad1 protein maps to a localized region between amino acids 809–997. The Rad1 -binding domain of Radio protein maps between amino acids 90–210. These domains are evolutionarily conserved and are hydrophobic in character. Although significant homology exists between Rad10 and the human-DNA-repair protein Ercc1 in this region, we were unable to detect any interaction between Ercc1 and Rad1 proteins. We conclude that Rad1 and Rad10 operate in DNA repair and mitotic recombination as a constitutive complex.  相似文献   

8.
HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.  相似文献   

9.
10.
11.
Ensuring balanced distribution of chromosomes in gametes, meiotic recombination is essential for fertility in most sexually reproducing organisms. The repair of the programmed DNA double strand breaks that initiate meiotic recombination requires two DNA strand-exchange proteins, RAD51 and DMC1, to search for and invade an intact DNA molecule on the homologous chromosome. DMC1 is meiosis-specific, while RAD51 is essential for both mitotic and meiotic homologous recombination. DMC1 is the main catalytically active strand-exchange protein during meiosis, while this activity of RAD51 is downregulated. RAD51 is however an essential cofactor in meiosis, supporting the function of DMC1. This work presents a study of the mechanism(s) involved in this and our results point to DMC1 being, at least, a major actor in the meiotic suppression of the RAD51 strand-exchange activity in plants. Ectopic expression of DMC1 in somatic cells renders plants hypersensitive to DNA damage and specifically impairs RAD51-dependent homologous recombination. DNA damage-induced RAD51 focus formation in somatic cells is not however suppressed by ectopic expression of DMC1. Interestingly, DMC1 also forms damage-induced foci in these cells and we further show that the ability of DMC1 to prevent RAD51-mediated recombination is associated with local assembly of DMC1 at DNA breaks. In support of our hypothesis, expression of a dominant negative DMC1 protein in meiosis impairs RAD51-mediated DSB repair. We propose that DMC1 acts to prevent RAD51-mediated recombination in Arabidopsis and that this down-regulation requires local assembly of DMC1 nucleofilaments.  相似文献   

12.
Saccharomyces cerevisiae Rad14 and Rad10 proteins are essential for nucleotide excision repair (NER). Rad14 is a UV-damaged DNA binding protein and Rad10 is a structure-specific endonuclease that functions in a complex with Rad1. In this study, we identified and characterized the RAD14 and RAD10 homolog genes in Neurospora crassa, which we named mus-43 and mus-44, respectively. Disruption of mus-43 and mus-44 conferred sensitivity to UV and 4-nitroquinoline 1-oxide, but not to methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, camptothecin, hydroxyurea, or bleomycin. The mus-44 mutant was more sensitive to UV than the mus-43 mutant. Genetic analysis indicated that mus-43 and mus-44 are epistatic to mus-38 which is a homolog of the S. cerevisiae RAD1, but not to mus-18 which belongs to a second excision repair pathway. Immunological assays demonstrated that both mus-43 and mus-44 retained the ability to excise UV-induced cyclobutane pyrimidine dimers and 6-4 photoproducts, but that excision ability was completely abolished in the mus-43 mus-18 and mus-44 mus-18 double mutants. These double mutants exhibited extremely high sensitivity to UV. In mus-43 and mus-44 mutants, the UV-induced mutation frequency increased compared to that of the wild-type. The mus-44 mutants also exhibited a partial photoreactivation defect phenotype similar to mus-38. These results suggest that both mus-43 and mus-44 function in the mus-38 NER pathway, but not in the mus-18 excision repair pathway.  相似文献   

13.
RAD51B and RAD51C are two of five known paralogs of the human RAD51 protein that are thought to function in both homologous recombination and DNA double-strand break repair. This work describes the in vitro and in vivo identification of the RAD51B/RAD51C heterocomplex. The RAD51B/RAD51C heterocomplex was isolated and purified by immunoaffinity chromatography from insect cells co-expressing the recombinant proteins. Moreover, co-immunoprecipitation of the RAD51B and RAD51C proteins from HeLa, MCF10A, and MCF7 cells strongly suggests the existence of an endogenous RAD51B/RAD51C heterocomplex. We extended these observations to examine the interaction between the RAD51B/RAD51C complex and the other RAD51 paralogs. Immunoprecipitation using protein-specific antibodies showed that RAD51C is central to a single large protein complex and/or several smaller complexes with RAD51B, RAD51D, XRCC2, and XRCC3. However, our experiments showed no evidence for the inclusion of RAD51 within these complexes. Further analysis is required to elucidate the function of the RAD51B/RAD51C heterocomplex and its association with the other RAD51 paralogs in the processes of homologous recombination and DNA double-strand break repair.  相似文献   

14.
In the mitotic cell cycle of the yeast Saccharomyces cerevisiae, the sister chromatid is preferred over the homologous chromosome (non-sister chromatid) as a substrate for DNA double-strand break repair. However, no genes have yet been shown to be preferentially involved in sister chromatid-mediated repair. We developed a novel method to identify genes that are required for repair by the sister chromatid, using a haploid strain that can embark on meiosis. We show that the recombinational repair gene RAD54 is required primarily for sister chromatid-based repair, whereas TID1, a yeast RAD54 homologue, and the meiotic gene DMC1, are dispensable for this type of repair. Our observations suggest that the sister chromatid repair pathway, which involves RAD54, and the homologous chromosome repair pathway, which involves DMC1, can substitute for one another under some circumstances. Deletion of RAD54 in S.cerevisiae results in a phenotype similar to that found in mammalian cells, namely impaired DNA repair and reduced recombination during mitotic growth, with no apparent effect on meiosis. The principal role of RAD54 in sister chromatid-based repair may also be shared by mammalian and yeast cells.  相似文献   

15.
Eukaryotic genomes contain potentially unstable sequences whose rearrangement threatens genome structure and function. Here we show that certain mutant alleles of the nucleotide excision repair (NER)/TFIIH helicase genes RAD3 and SSL2 (RAD25) confer synthetic lethality and destabilize the Saccharomyces cerevisiae genome by increasing both short-sequence recombination and Ty1 retrotransposition. The rad3-G595R and ssl2-rtt mutations do not markedly alter Ty1 RNA or protein levels or target site specificity. However, these mutations cause an increase in the physical stability of broken DNA molecules and unincorporated Ty1 cDNA, which leads to higher levels of short-sequence recombination and Ty1 retrotransposition. Our results link components of the core NER/TFIIH complex with genome stability, homologous recombination, and host defense against Ty1 retrotransposition via a mechanism that involves DNA degradation.  相似文献   

16.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.  相似文献   

17.
Z Wang  X Wu  E C Friedberg 《Biochemistry》1992,31(14):3694-3702
Excision repair of DNA is an important cellular response to DNA damage caused by a broad spectrum of physical and chemical agents. We have established a cell-free system in which damage-specific DNA repair synthesis can be demonstrated in vitro with nuclear extracts from the yeast Saccharomyces cerevisiae. Repair synthesis of UV-irradiated plasmid DNA was observed in a radiation dose-dependent manner and was unaffected by mutations in the RAD1, RAD2, RAD3, RAD4, RAD10, or APN1 genes. DNA damaged with cis-platin was not recognized as a substrate for repair synthesis. Further examination of the repair synthesis observed with UV-irradiated DNA revealed that it is dependent on the presence of endonuclease III-sensitive lesions in DNA, but not pyrimidine dimers. These observations suggest that the repair synthesis observed in yeast nuclear extracts reflects base excision repair of DNA. Our data indicate that the patch size of this repair synthesis is at least seven nucleotides. This system is expected to facilitate the identification of specific gene products which participate in base excision repair in yeast.  相似文献   

18.
The mammalian ERCC1-encoded polypeptide is required for nucleotide excision repair of damaged DNA and is homologous to Saccharomyces cerevisiae RAD10, which functions in repair and mitotic intrachromosomal recombination. Rodent cells representing repair complementation group 1 have nonfunctional ERCC1. We report that repair of UV-irradiated DNA can be reconstituted by combining rodent group 1 cell extracts with correcting protein from HeLa cells. Background repair was minimized by employing fractionated rodent cell extracts supplemented with human replication proteins RPA and PCNA. Group 1-correcting activity has a native molecular mass of 100 kDa and contains the 33 kDa ERCC1 polypeptide, as well as complementing activities for extracts from rodent group 4 and xeroderma pigmentosum group F (XP-F) cells. Extracts of group 1, group 4 or XP-F cells do not complement one another in vitro, although they complement extracts from other groups. The amount of ERCC1 detectable by immunoblotting is reduced in group 1, group 4 and XP-F extracts. Recombinant ERCC1 from Escherichia coli only weakly corrected the group 1 defect. The data suggest that ERCC1 is part of a functional protein complex with group 4 and XP-F correcting activities. The latter two may be equivalent to one another and analogous to S. cerevisiae RAD1.  相似文献   

19.
The RAD10 gene of Saccharomyces cerevisiae is required for nucleotide excision repair of DNA. Expression of RAD10 mRNA and Rad10 protein was demonstrated in Chinese hamster ovary (CHO) cells containing amplified copies of the gene, and RAD10 mRNA was also detected in stable transfectants without gene amplification. Following transfection with the RAD10 gene, three independently isolated excision repair-defective CHO cell lines from the same genetic complementation group (complementation group 2) showed partial complementation of sensitivity to killing by UV radiation and to the DNA cross-linking agent mitomycin C. These results were not observed when RAD10 was introduced into excision repair-defective CHO cell lines from other genetic complementation groups, nor when the yeast RAD3 gene was expressed in cells from genetic complementation group 2. Enhanced UV resistance in cells carrying the RAD10 gene was accompanied by partial reactivation of the plasmid-borne chloramphenicol acetyltransferase (cat) gene following its inactivation by UV radiation. The phenotype of CHO cells from genetic complementation group 2 is also specifically complemented by the human ERCC1 gene, and the ERCC1 and RAD10 genes have similar amino acid sequences. The present experiments therefore indicate that the structural homology between the yeast Rad10 and human Ercc1 polypeptides is reflected at a functional level, and suggest that nucleotide excision repair proteins are conserved in eukaryotes.  相似文献   

20.
Saccharomyces cerevisiae RAD4, RAD7, RAD16, and RAD23 genes function in the nucleotide excision repair (NER) of ultraviolet light (UV)-damaged DNA. Previous biochemical studies have shown that the Rad4 and Rad23 proteins are associated in a stoichiometric complex named NEF2, and the Rad7 and Rad16 proteins form another stoichiometric complex named NEF4. While NEF2 is indispensable for the incision of UV-damaged DNA in the in vitro reconstituted system, NEF4 stimulates the incision reaction. Both NEF2 and NEF4 bind UV-damaged DNA, which raises the intriguing possibility that these two complexes cooperate to achieve the high degree of specificity for DNA damage demarcation required for nucleotide excision repair in vivo. Consistent with this hypothesis, we find that NEF2 and NEF4 bind in a synergistic fashion to UV-damaged DNA in a reaction that is dependent on ATP. We also purify the Rad7 protein and show that it binds DNA but has no preference for UV-damaged DNA. Rad7 physically interacts with NEF2, suggesting a role for Rad7 in linking NEF2 with NEF4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号