首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some strains of Saccharomyces cerevisiae exhibit a specific transport system for ureidosuccinic acid, which is regulated by nitrogen metabolism. Ureidosuccinic acid uptake occurs with proline but with ammonium sulfate as nitrogen source it is inhibited. The V for transport is 20–25 μmol/ml cell water per min. The apparent Km is 3 · 10-5. For the urep1 mutant (ureidosuccinic acid permease less) the internal concentration never exceeds the external one.In the permease plus strain ureidosuccinic acid can be concentrated up to 10 000 fold and the accumulated compound remains unchanged in the cells. Energy poisons such as dinitrophenol, carbonyl cyanide-m-chlorophenyl-drazone (CCCP) or NaN3 inhibit the uptake. No significant efflux of the accumulated compound occurs even in the presence of these drugs.The specificity of the permease is very strict, only amino acids carrying an α-N-carbamyl group are strongly competitive inhibitors.The high concentration capacity of the cells and the lack of active exit of the accumulated compound support the hypothesis of a carrier mediated active transport system.  相似文献   

2.
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

3.
Galactose transport in Streptococcus thermophilus.   总被引:4,自引:2,他引:2       下载免费PDF全文
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

4.
Ureidosuccinic acid (USA) is an intermediary product in pyrimidine biosynthesis. When proline was the sole nitrogen source, USA uptake occurred; however, when ammonium sulfate or glutamic acid was the nitrogen source, uptake was inhibited. Thus, a ura2 strain which does not synthesize USA would not grow when this substance was supplied on an ammonium sulfate or glutamic acid medium. Mutants are described in which uptake was constitutive on such a medium. Permeaseless mutants for USA have been found, and evidence is presented for permease specificity. It is shown that all constitutive mutants use the same transport system that is missing in the permeaseless mutant. These mutants are constitutive for two permeases: the specific USA permease and the general amino acid permease. The transport system studied here, like the general amino acid transport system, is regulated by nitrogen metabolism. These facts and others suggest that our permease constitutive mutants are impaired in nitrogen metabolism.  相似文献   

5.
Allantoin uptake in Saccharomyces cerevisiae is mediated by an energy-dependent, low-Km, active transport system. However, there is at present little information concerning its regulation. In view of this, we investigated the control of alloantoin transport and found that it was regulated quite differently from the other pathway components. Preincubation of appropriate mutant cultures with purified allantoate (commercial preparations contain 17% allantoin), urea, or oxalurate did not significantly increase allantoin uptake. Preincubation with allantoin, however, resulted in a 10- to 15-fold increase in the rate of allantoin accumulation. Two allantoin analogs were also found to elicit dramatic increases in allantoin uptake. Hydantoin and hydantoin acetic acid were able to induce allantoin transport to 63 and 95% of the levels observed with allantoin. Neither of these compounds was able to serve as a sole nitrogen source for S. cerevisiae, and they may be non-metabolizable inducers of the allantoin permease. The rna1 gene product appeared to be required for allantoin permease induction, suggesting that control was exerted at the level of gene expression. In addition, we have shown that allantoin uptake is not unidirectional; efflux merely occurs at a very low rate. Allantoin uptake is also transinhibited by addition of certain amino acids to the culture medium, and several models concerning the operation of such inhibition were discussed.  相似文献   

6.
Cellobiose transport by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes was measured using randomly tritiated cellobiose. When assayed at the same concentration (1 mM), total cellobiose uptake was one-fourth to one-third that of total glucose uptake. The abilities of F. succinogenes to transport cellobiose or glucose were not affected by the sugar on which the cells were grown. Aspects of the simultaneous transport of [14C(U)]glucose and [3H(G)]cellobiose, the failure of high concentrations of cold glucose to compete with hypothetical [3H(G)]glucose (derived externally from [3H(G)]cellobiose), and differential metal-ion stimulation of cellobiose transport indicate a cellobiose permease, rather than cellobiase plus glucose permease, was responsible for cellobiose transport. Glucose (10-fold molar excess) partially inhibited cellobiose transport. This was enhanced by prior incubation of the cells with glucose, suggesting subsequent metabolism of the glucose was responsible for the inhibition. Compounds interfering with electron transport or maintenance of transmembrane ion gradients inhibited cellobiose uptake, indicating that active transport rather than a phosphoenolpyruvate:phosphotransferase system catalyzed cellobiose transport. Na+, but not Li+, stimulated cellobiose transport.  相似文献   

7.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H(+) -dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of D- and L-[U-(14)C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-D-glucose/D-[U-(14)C]glucose and 3-O-methyl-D-glucose/3-O-methyl-D-[U-(14)C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH(4)Cl inhibited neither the linear component of D- and L-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-D-[U-(14)C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol(-1), respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol(-1)). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

8.
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.  相似文献   

9.
Specificity and control of choline-O-sulfate transport in filamentous fungi   总被引:9,自引:2,他引:7  
Choline-O-sulfate uptake by Penicillium notatum showed the following characteristics. (i) Transport was mediated by a permease which is highly specific for choline-O-sulfate. No significant inhibition of transport was caused by choline, choline-O-phosphate, acetylcholine, ethanolamine-O-phosphate, ethanolamine-O-sulfate, methanesulfonyl choline, 2-aminoethane thiosulfate, or the monomethyl or dimethyl analogues of choline-O-sulfate. Similarly, no significant inhibition was caused by any common sulfur amino acid or inorganic sulfur compound. Mutants lacking the inorganic sulfate permease possessed the choline-O-sulfate permease at wild-type levels. (ii) Choline-O-sulfate transport obeyed saturation kinetics (K(m) = 10(-4) to 3 x 10(-4)m; V(max) = 1 to 6 mumoles per g per min). The kinetics of transport between 10(-9) and 10(-1)m external choline-O-sulfate showed that only one saturable mechanism is present. (iii) Transport was sensitive to 2,4-dinitrophenol, azide, N-ethylmaleimide, p-chloromercuribenzoate, and cyanide. Ouabain, phloridzin, and eserine had no effect. (iv) Transport was pH-dependent with an optimum at pH 6. Variations in the ionic strength of the incubation medium had no effect. (v) Transport was temperature-dependent with a Q(10) of greater than 2 between 3 and 40 C. Transport decreased rapidly above 40 C. (vi) Ethylenediaminetetraacetate (sodium salts, pH 6) had no effect, nor was there any stimulation by metal or nonmetal ions. Cu(++), Ag(+), and Hg(++) were inhibitory. (vii) The initial rate at which the ester is transported was independent of intracellular hydrolysis. After long periods of incubation (> 10 min), a significant proportion of the transported choline-O-sulfate was hydrolyzed intracellulary. In the presence of 5 x 10(-3)m external choline-O-sulfate, the mycelia accumulated choline-O-sulfate to an apparent intracellular concentration of 0.075 m by 3 hr. Transport was unidirectional. No efflux or exchange of (35)S-choline-O-sulfate was observed when preloaded mycelia were suspended in buffer alone or in buffer containing a large excess of unlabeled choline-O-sulfate. (viii) The specific transport activity of the mycelium depended on the sulfur source used for growth. (ix) Sulfur starvation of sulfur-sufficient mycelium resulted in an increase in the specific transport activity of the mycelium. This increase was prevented by cycloheximide, occurred only when a metabolizable carbon source was present, and resulted from an increase in the V(max) of the permease, rather than from a decrease in K(m). The increase could be partially reversed by refeeding the mycelia with unlabeled choline-O-sulfate, sulfide, sulfite, l-homocysteine, l-cysteine, or compounds easily converted to cysteine. The results strongly suggested that the choline-O-sulfate permease is regulated primarily by repression-derepression, but that intracellular choline-O-sulfate and cysteine can act as feedback inhibitors.  相似文献   

10.
In the unicellular non-vacuolate red alga Cyanidium caldarium nitrate uptake occurs through two specific permease systems which, on the basis of kinetic constants can be defined as low affinity system and high affinity system. The high affinity system is saturated at very low nitrate concentrations (<1 M), whereas the low affinity system is saturated only at high nitrate concentrations (K m=0.45±0.10 mM). The low affinity system is present in cells growing under conditions of nitrogen limitation as well as in cells growing in excess nitrate. In contrast, the high affinity system is present only in cells growing under conditions of nitrogen limitation. The high affinity system works only at acid pH and is inactive at neutral pH. The low affinity system is active both at acid and at neutral pH.  相似文献   

11.
Regulation of Manganese Accumulation and Exchange in Bacillus subtilis W23   总被引:10,自引:6,他引:4  
An overnight culture of Bacillus subtilis W23 in low-manganese tryptone broth is unable to sporulate and becomes hyperactive with regard to the manganese active transport system during stationary phase. When manganese is added to cells in spent or fresh medium, the cells immediately accumulate a high proportion of the manganese available in the medium. When the hyperactive cells are diluted into broth containing 10 muM Mn(2+), high intracellular manganese levels are reached, and inhibition of ribonucleic acid and protein synthesis occurs. This inhibition is relieved when the intracellular manganese concentration declines to the nontoxic levels characteristic of cells growing in 10 muM Mn(2+). The release of the accumulated manganese is achieved by a reduction in the uptake rate for manganese while the efflux rate remains essentially constant. Inhibitors of ribonucleic acid and protein synthesis prevent the reduction of the high rate of manganese uptake and, therefore, high net concentrations of manganese are maintained in the presence of these inhibitors. The hyperactive manganese uptake system is temperature dependent and inhibited by cyanide and m-chlorophenyl carbonylcyanide hydrazone.  相似文献   

12.
The properties of folinate and 5-methyltetrahydrofolate (5-CH(3)-H(4)PteGlu) transport mechanism of Pediococcus cerevisiae were studied. The uptake was dependent on temperature, pH (optimum for both compounds at pH 6.0), and glucose. Iodoacetate, potassium fluoride, and sodium azide inhibited the uptake. 5-CH(3)-H(4)-PteGlu was apparently not metabolized but folinate was metabolized. Metabolism of folinate was reduced by preincubation of cells with fluorodeoxyuridine. The transport system for folinate and 5-CH(3)-H(4)PteGlu were specific for the l-isomers. Pteroylglutamate, aminopterin, and amethopterin did not interfere with the uptake. Tetrahydrofolate competed with the uptake of folinate. The transport of folinate and 5-CH(3)-H(4)PteGlu at 37 C conformed to Michaelis-Menten kinetics; apparent K(m) for both compounds was 4.0 x 10(-7)m, and the V(max) for folinate was 1.0 x 10(-10) moles per min per mg (dry weight) and for 5-CH(3)-H(4)PteGlu it was 1.6 x 10(-10) moles per min per mg (dry weight). Both compounds accumulated in the intracellular pool at a concentration about 80- to 140-fold higher than that in the external medium. Folinate inhibited competitively the uptake of 5-CH(3)-H(4)PteGlu with a K(i) of 0.4 x 10(-7)m. Unlike 5-CH(3)-H(4)PteGlu, which accumulated only at 37 C, folinate was also taken up at 0 C by a glucose- and temperature-independent process, which was not affected by the metabolic inhibitors mentioned above. Since at 0 C the intracellular concentration of folinate was also considerably higher than the external, binding of the substrate to some cellular component is assumed. The finding of an efficient transport system for l-5-CH(3)-H(4)PteGlu is of special interest, since this compound has no growth-promoting activity for P. cerevisiae.  相似文献   

13.
The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1p(K9R,K16R), is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1p(K9R,K16R) can be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1p(K9R,K16R)-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.  相似文献   

14.
  • 1.1. This work represents the first approach to characterize the transport system of haem pathway precursors, such as δ-aminolevulinic acid (ALA), in two strains of Saccharomyces cerevisiae, a wild type, D27, and a HEM R+ mutant.
  • 2.2. ALA transport occurs unidirectionally by a sole active system with an apparent KM of 0.10 mM, at the optimum pH of 5.0. ALA uptake is influenced by both the carbon and nitrogen source; this suggests a rather complex regulation mechanism.
  • 3.3. This transport is not mediated by the general amino acid permease (GAP).
  • 4.4. ALA uptake is strongly inhibited by compounds harboring a methyl-amine terminus suggesting that this group is essential for ALA transport; however, the electric environment of the carboxylic group may be also important for the interaction between ALA and its transporter active site.
  • 5.5. We have found differences in ALA transport which would indicate a different regulation mechanism for this system in both strain cells.
  相似文献   

15.
16.
We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with [3H](5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.  相似文献   

17.
l-Leucine entered the cells of both morphological forms of Histoplasma capsulatum by a permease-like system at low external concentrations of substrate. However, at levels greater than 5 x 10(-5)m l-leucine, the amino acid entered the cells both through a simple diffusion-like process and the permease-like system. The rate of the amino acid diffusion into yeast and mycelial forms appeared to be the same, whereas the initial rate of accumulation through the permease-like system was 5 to 10 times faster in the mycelial phase than it was in the yeast phase. The Michaelis constants were 2.2 x 10(-5)m in yeast phase and 2 x 10(-5)m in mycelial phase cells. Transport of l-leucine at an external concentration of 10(-5)m showed all of the characteristics of a system of active transport, which was dependent on temperature and pH. Displacement or removal of the alpha-amino group, or modification of the alpha-carboxyl group abolished amino acid uptake. The process was competitively inhibited by neutral aliphatic side-chain amino acids (inhibition constants ranged from 1.5 x 10(-5) to 6.2 x 10(-5)m). Neutral aromatic side-chain amino acids and the d-isomers of leucine and valine did not inhibit l-leucine uptake. These data were interpreted to mean that the l-leucine transport system is stereospecific and is highly specific for neutral aliphatic side-chain amino acids. Incorporation of l-leucine into macromolecules occurred at almost the same rate in both morphological forms of the fungus. The mycelial phase but not the yeast phase showed a slight initial lag in incorporation. In both morphological forms the intracellular pool of l-leucine was of limited capacity, and the total uptake of the amino acid was a function of intracellular pool size. The initial rate of l-leucine uptake was independent of the level of intracellular pool. Both morphological forms deaminated and degraded only a minor fraction of the accumulated leucine.  相似文献   

18.
The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumulated the basic amino acids arginine and lysine. Inhibition studies with analogs revealed a narrow substrate specificity. Within the external pH range of 5.5 to 7.5, the transmembrane electrical potential (delta psi) functions as the main driving force for uphill transport of arginine, although a low level of uptake was observed when only a transmembrane pH gradient was present. It is concluded that the basic amino acid permease is a H+ symporter. Quantitative analysis of the steady-state levels of arginine uptake in relation to the proton motive force suggests a H+-arginine symport stoichiometry of one to one. Efflux studies demonstrated that the basic amino acid permease functions in a reversible manner.  相似文献   

19.
Dureja, I., Guha-Mukherjee, S. and Prasad, R. 1986. Mechanismof L-lysine transport by pea protoplasts.—J. exp. Bot.37: 549–555. L-Lysine uptake was studied in pea protoplasts to characterizethe transport process. The uptake was pH dependent with optimumat pH 5?8. A kinetic analysis of uptake showed that L-lyslneuptake was biphasic. The respiratory inhibitors, sodium arsenate,azide, iodoacetate and 2, 4, dinitrophenol, inhibited the uptakeof L-lysine at a final concentration of 0?1 mol m–3 suggestingit to be mediated in part by an active process. Competitiveinhibition of L-lysine uptake by only L-arglnine and of L-leucineand glycine uptake by several amino acids indicated that L-lysineuptake occurs via a specific system whereas the uptake of L-leucineand glycine was mediated through a relatively non-specific permease. Key words: Pea protoplasts, L-lysine transport, active transport, specific system  相似文献   

20.
Amino acid uptake and protein synthesis in preimplanatation mouse embryos   总被引:1,自引:0,他引:1  
Amino acid uptake and cycloheximide inhibitable incorporation into protein are demonstrable in follicular ova, unfertilized eggs, and in mouse embryos ranging from the 1-cell to the late blastocyst stages. The rates of uptake and incorporation are low and relatively constant until the early blastocyst (day 3) stage of development when they increase 3- to 9-fold. The rate of uptake continues to increase during the fourth day (late blastocyst stage) of development, but, despite embryonic growth, incorporation into protein remains constant. By exposing embryos to leucine and lysine at different concentrations, it is possible to dissociate the processes of uptake and incorporation into protein from one another and to use the latter as a measure of protein synthesis. Taking the number of embryonic cells into account, it is postulated that the period between 8- to 16-cell stage (day 2) and the early blastocyst stage is the only one in which the synthesis of major amounts of protein based on new messenger RNA synthesis is occurring.Leucine and lysine uptake take place by a facilitated process, although lysine transport is not readily saturated. Inhibitors of energy metabolism do not significantly affect amino acid uptake, but they do inhibit protein synthesis. However, since the rate of transport is highly temperature sensitive (Q10 ? 3) and leucine is accumulated against a concentration gradient, active amino acid transport appears to be present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号