首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABCG2 is an ATP-binding cassette half-transporter initially identified in multidrug-resistant cancer cell lines and recently suggested to play an important role in pharmacokinetics. Here we report studies of a conserved arginine predicted to localize near the cytoplasmic side of TM1. First, we determined the effect of losing charge and bulk at this position via substitutions with glycine and alanine. The R383G mutant when transfected into HEK cells was not detectable on immunoblot or by functional assay, while the R383A mutant exhibited detectable but significantly decreased levels compared to wild-type, partial retention in the ER and altered glycosylation. Efflux of the ABCG2-substrates mitoxantrone and pheophorbide a was observed. Our experiments suggested rapid degradation of the R383A mutant by the proteasome via a kifunensine-insensitive pathway. Interestingly, overnight treatment of the R383A mutant with mitoxantrone assisted in protein maturation as evidenced by a shift to the N-glycosylated form. The R383A mutant when expressed in insect cells, though detected on the surface, had no measurable ATPase activity. In addition, substitution with the positively charged lysine resulted in significantly decreased protein expression levels in HEK cells, while retaining function. In conclusion, arginine 383 is a crucial residue for ABCG2 biogenesis, where even the most conservative mutations have a large impact.  相似文献   

2.
ABCG2 (BCRP/MXR/ABCP) is a half-transporter associated with multidrug resistance that presumably homodimerizes for function. It has a conserved GXXXG motif in its first transmembrane segment, a motif that has been linked with dimerization in other proteins, e.g., glycophorin A. We substituted either or both glycines of this GXXXG motif with leucines to evaluate the impact on drug transport, ATP hydrolysis, cross-linking, and susceptibility to degradation. All mutants also carried the R482G gain-of-function mutation, and all migrated to the cell surface. The mutations resulted in lost transport for rhodamine 123 and impaired mitoxantrone, pheophorbide a, and BODIPY-prazosin transport, particularly in the double leucine mutant (G406L/G410L). Basal ATPase activity of the G406L/G410L mutant was comparable to the empty vector transfected cells with no substrate induction. Despite impaired function, the mutants retained susceptibility to cross-linking using either disuccinimidyl suberate (DSS) or the reducible dithiobis(succinimidyl propionate) (DSP) and demonstrated a high molecular weight complex under nonreducing conditions. Mutations to alanine at the same positions yielded fully functional transporters. Finally, we exposed cells to mitoxantrone to promote folding and processing of the mutant proteins, which in the leucine mutants resulted in increased amounts detected on immunoblot and by immunofluorescence. These studies support a hypothesis that the GXXXG motif promotes proper packing of the transmembrane segments in the functional ABCG2 homodimer, although it does not solely arbitrate dimerization.  相似文献   

3.
Mo W  Qi J  Zhang JT 《Biochemistry》2012,51(17):3634-3641
ABCG2 is a member of the ATP-binding cassette transporter superfamily, and its overexpression causes multidrug resistance (MDR) in cancer chemotherapy. ABCG2 may also protect cancer stem cells by extruding cytotoxic materials. ABCG2 has previously been shown to exist as a high-order homo-oligomer consisting of possibly 8-12 subunits, and the oligomerization domain was mapped to the C-terminal domain, including TM5, ECL3, and TM6. In this study, we further investigate this domain in detail for the role of each segment in the oligomerization and drug transport function of ABCG2 using domain swapping and site-directed mutagenesis. We found that none of the three segments (TM5, TM6, and ECL3) is essential for the oligomerization activity of ABCG2 and that any one of these three segments in the full-length context is sufficient to support ABCG2 oligomerization. While TM5 plays an important role in the drug transport function of ABCG2, TM6 and ECL3 are replaceable. Thus, each segment in the TM5-ECL3-TM6 domain plays a distinctive role in the oligomerization and function of ABCG2.  相似文献   

4.
Lee JE  Luong W  Huang DJ  Cornell KA  Riscoe MK  Howell PL 《Biochemistry》2005,44(33):11049-11057
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is important in a number of cellular functions such as polyamine biosynthesis, methionine salvaging, biological methylation, and quorum sensing. The nucleosidase is found in many microbes but not in mammalian systems, thus making MTAN a broad-spectrum antimicrobial drug target. Substrate binding and catalytic residues were identified from the crystal structure of MTAN complexed with 5'-methylthiotubercidin [Lee, J. E., Cornell, K. A., Riscoe, M. K. and Howell, P. L. (2003) J. Biol. Chem. 278 (10) 8761-8770]. The roles of active site residues Met9, Glu12, Ile50, Ser76, Val102, Phe105, Tyr107, Phe151, Met173, Glu174, Arg193, Ser196, Asp197, and Phe207 have been investigated by site-directed mutagenesis and steady-state kinetics. Mutagenesis of residues Glu12, Glu174, and Asp197 completely abolished activity. The location of Asp197 and Glu12 in the active site is consistent with their having a direct role in enzyme catalysis. Glu174 is suggested to be involved in catalysis by stabilizing the transition state positive charge at the O3', C2', and C3' atoms and by polarizing the 3'-hydroxyl to aid in the flow of electrons to the electron withdrawing purine base. This represents the first indication of the importance of the 3'-hydroxyl in the stabilization of the transition state. Furthermore, mutation of Arg193 to alanine shows that the nucleophilic water is able to direct its attack without assistance from the enzyme. This mutagenesis study has allowed a reevaluation of the catalytic mechanism.  相似文献   

5.
A bioactive synthetic 11 amino acid peptide probe (P11) was constructed according to the published sequence of the human 5HT1a receptor. The probe was used to enhance understanding of cytoplasmic loop 2/G protein coupling and activation. Additionally, two peptides (P8, P9) from the cytoplasmic loop 3 region were synthesized and studied. These probes were tested in a model system of human 5HT1a receptor stably expressed in Chinese Hamster Ovary cells. In agonist inhibition studies, P11 was active in all three receptor preparations tested: whole cells, membrane bound, and solubilized. In analyses of the membrane bound receptor system, P11 demonstrated uncompetitive inhibition characteristics. When forskolin-stimulated cAMP levels were measured, P11 was inactive in this negatively coupled system. Utilizing a [35S]gamma-S-GTP incorporation assay, P11 was unable to stimulate G protein incorporation of GTP. While P8 and P9 were also broadly active as non-competitive agonist inhibitors, their characteristics differed in the signal transduction system. P8 and P9 did not significantly change forskolin-stimulated cAMP levels. However, P8 increased [35S]gamma-S-GTP incorporation, while P9 decreased incorporation. Thus, P11, a synthetic peptide from the TM3/i2 region of the receptor, provides suggestive evidence that this receptor region is involved in G protein coupling but not activation. On the other hand, P8 and P9 activities suggest that the TM5/i3 region is involved in both coupling to and regulation of G protein activity. The current evidence from these cytoplasmic loop regions is discussed in the overall context of an emerging model for human 5HT1a receptor-G protein interactions.  相似文献   

6.
It has been shown that the transgene insertional mutations TM1 and TM2 constitute a genetic trait controlling thymocyte development. Here we conducted a detailed analysis of the impact of TM1 and TM2 double mutation on thymocyte development. We found that the hemizygous TM1 and TM2 double transgenic mice possessed much smaller thymi. Flow cytometric analysis revealed a severe blockage of T-cell development at the transition from DN3 to DN4 stage and pre-T-cell receptor (pre-TCR)/TCR signaling appeared to be impaired. We could not identify any known gene that was implicated in a similar function in the chromosomal regions 7E-F1 and 11B5-C, where TM1 and TM2 mutations were mapped to respectively. Thus, TM1 and TM2 mutations represent two novel alleles that define a genetic trait controlling DN3 thymocyte development, possibly through modulating the signals downstream of the pre-TCR.  相似文献   

7.
The 5-HT4 receptor (5-HT4R) belongs to the G-protein-coupled receptor (GPCR) family and is of considerable interest for the development of new drugs to treat gastrointestinal diseases and memory disorders. The 5-HT4R exists as a constitutive dimer but its molecular determinants are still unknown. Using co-immunoprecipitation and Bioluminescence Resonance Energy Transfer (BRET) techniques, we show here that 5-HT4R homodimerization but not 5-HT4R-β2 adrenergic receptor (β2AR) heterodimerization is largely decreased under reducing conditions suggesting the participation of disulfide bonds in 5-HT4R dimerization. Molecular modeling and protein docking experiments identified four cysteine (Cys) residues potentially involved in the dimer interface through intramolecular or intermolecular disulfide bonds. We show that disulfide bridges between Cys112 and Cys145 located within TM3 and TM4, respectively, are of critical importance for 5-HT4R dimer formation. Our data suggest that two disulfide bridges between two transmembrane Cys residues are involved in the dimerization interface of a GPCR.  相似文献   

8.
SUMMARY: Biofilms are complex microbial communities found at surfaces that are often associated with extracellular polysaccharides. Biofilm formation is a complex process that is being understood at the molecular level only recently. We have identified a novel domain that we call the G5 domain (named after its conserved glycine residues), which is found in a variety of enzymes such as Streptococcal IgA peptidases and various glycosyl hydrolases in bacteria. The G5 domain is found in the Accumulation Associated Protein (AAP), which is an important component in biofilm formation in Staphylococcus aureus. A common feature of the proteins containing G5 domains is N-acetylglucosamine binding, and we attribute this function to the G5 domain. CONTACT: agb@sanger.ac.uk.  相似文献   

9.
The previously isolated hemiplegic, induction-negative, repression-positive mutants, H80R and Y82C, were found to be defective in the binding of arabinose. Randomization of other residues close to arabinose in the three-dimensional structure of AraC or that make strong interactions with arabinose yielded induction-negative, repression-positive mutants. The induction and repression properties of mutants obtained by randomizing individual residues of the N-terminal arm of AraC allowed identification of the domain with which that residue very likely makes its predominant interactions. Residues 8-14 of the arm appear to make their predominant interaction with the DNA-binding domain. Although the side-chain of residue 15 interacts directly with arabinose bound to the N-terminal dimerization domain, the properties of mutant F15L indicate that this mutation increases the affinity of the arm for the DNA-binding domain.  相似文献   

10.
ATP-binding cassette (ABC) G5 (G5) and ABCG8 (G8) heterodimerize and function as sterol transporter that promote biliary excretion of neutral sterols. Both G5 and G8 interact with a lectin-like chaperone, calnexin (CNX), in the endoplasmic reticulum (ER) but the significance of this interaction remains unclear. Here, we show that not only CNX, but also its homologue calreticulin (CRT), is involved in the biosynthesis of G5/G8 sterol transporter. Both CNX and CRT interacted with immature forms of G5 and G8, and stimulated their productive folding by inhibiting their degradation. Interestingly, CRT predominantly enhanced the cell surface expression of mature G5/G8 whereas CNX did not have a similar effect. Inhibitors of N-glycan processing indicated that quality control of G5 and G8 might be differentially regulated in the ER. These findings clarify the role of CNX and CRT in the biosynthesis and quality control of G5/G8 sterol transporter.  相似文献   

11.
The use of Bacillus probiotics has been demonstrated as a promising method in the biocontrol of bacterial diseases in aquaculture. However, the molecular antibacterial mechanism of Bacillus still remains unclear. In order to explore the antibacterial mechanism of the potential antagonistic Bacillus amyloliquefaciens strain G1, comparative proteomics between B. amyloliquefaciens strain G1 and its non-antagonistic mutant strain was investigated. The 2-dimensional electrophoresis gel maps of their total extracted proteins were described and 42 different proteins were found to be highly expressed in strain G1 in comparison with those in the mutant strain. 35 of these up-regulated proteins were successfully identified using MALDI-TOF-TOF MS and databank analysis, and their biological functions were analyzed through the KEGG database. The increased expression of these proteins suggested that high levels of energy metabolism, biosynthesis and stress resistance could play important roles in strain G1’s antagonism. To our knowledge, this is the first report on the proteins involved in the antagonism mechanism of B. amyloliquefaciens using a proteomic approach and the proteomic data also contribute to a better understanding of the molecular basis for the antagonism of B. amyloliquefaciens.  相似文献   

12.
The ATP-binding cassette half-transporters ABCG5 (G5) and ABCG8 (G8) promote secretion of neutral sterols into bile, a major pathway for elimination of sterols. Mutations in either ABCG5 or ABCG8 cause sitosterolemia, a recessive disorder characterized by impaired biliary and intestinal sterol secretion, sterol accumulation, and premature atherosclerosis. The mechanism by which the G5G8 heterodimer couples ATP hydrolysis to sterol transport is not known. Here we examined the roles of the Walker A, Walker B, and signature motifs in the nucleotide-binding domains (NBD) of G5 and G8 using recombinant adenoviruses to reconstitute biliary sterol transport in G5G8-deficient mice. Mutant forms of each half-transporter were co-expressed with their wild-type partners. Mutations at crucial residues in the Walker A and Walker B domains of G5 prevented biliary sterol secretion, whereas mutations of the corresponding residues in G8 did not. The opposite result was obtained when mutations were introduced into the signature motif; mutations in the signature domain of G8 prevented sterol transport, but substitution of the corresponding residues in G5 did not. Taken together, these findings indicate that the NBDs of G5 and G8 are not functionally equivalent. The integrity of the canonical NBD formed by the Walker A and Walker B motifs of G5 and the signature motif of G8 is essential for G5G8-mediated sterol transport. In contrast, mutations in key residues of the NBD formed by the Walker A and B motifs of G8 and the signature sequence of G5 did not affect sterol secretion.  相似文献   

13.
Genetic variation at the ABCG5/G8 locus has been associated with markers of cholesterol homeostasis. As data originate from small-scale studies, we performed a meta-analysis to study these associations in a large dataset. We first investigated associations between five common ABCG5/G8 polymorphisms (p.Q604E, p.D19H, p.Y54C, p.T400K, and p.A632V) and plasma sterol levels in 245 hypercholesterolaemic individuals. No significant associations were found. Subsequently, our data were pooled into a meta-analysis that comprised 3,364 subjects from 16 studies (weighted mean age, 46.7 ± 10.5 years; BMI, 23.9 ± 3.5 kg/m2). Presence of the minor 632V allele correlated with reduced LDL-C concentrations (n = 367) compared with homozygosity for the 632A variant [n = 614; −0.11 mmol/l (95% CI, range: −0.20 to −0.02 mmol/l); P = 0.01]. The remaining polymorphisms were not associated with plasma lipid levels. Carriers of the 19H allele exhibited lower campesterol/TC (n = 83; P < 0.001), sitosterol/TC (P < 0.00001), and cholestanol/TC (P < 0.00001), and increased lathosterol/TC ratios (P = 0.001) compared with homozygous 19D allele carriers (n = 591). The ABCG8 632V variant was associated with a clinically irrelevant LDL-C reduction, whereas the 19H allele correlated with decreased cholesterol absorption and increased synthesis without affecting the lipid profile. Hence, associations between frequently studied missense ABCG5/G8 polymorphisms and markers of cholesterol homeostasis are modest at best.  相似文献   

14.
Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution   总被引:3,自引:0,他引:3  
ATP-binding cassette transporters G5 and G8 are half-transporters expressed on the apical membranes of enterocytes and hepatocytes that limit intestinal uptake and promote secretion of neutral sterols. Genetic defects that inactivate either half-transporter cause accumulation of cholesterol and plant sterols, resulting in premature coronary atherosclerosis. These observations suggest that G5 and G8 promote the translocation of sterols across membranes, but the primary transport substrate of the G5G8 complex has not been directly determined. Here we report the development of a sterol transfer assay using "inside-out" membrane vesicles from Sf9 cells expressing recombinant mouse G5 and G8. Radiolabeled cholesterol or sitosterol was transferred from donor liposomes to G5- and G8-containing membrane vesicles in an ATP-dependent and vanadate-sensitive manner; net transfer of cholesterol was associated with an increase in vesicular cholesterol mass. CTP, GTP, and UTP, as well as ATP, supported transfer but with lesser efficiency (ATP > CTP > GTP > UTP). Transfer was specific for sterols and was stereoselective; minimal ATP-dependent and vanadate-sensitive transfer of cholesteryl oleate, phosphatidylcholine, or enantiomeric cholesterol was observed. These studies indicate that G5 and G8 are sufficient for reconstitution of sterol transfer activity in vitro and provide the first demonstration that sterols are direct transport substrates of the G5 and G8 heterodimer.  相似文献   

15.
ABCG2 is a half-transporter which causes multidrug resistance when overexpressed in tumor cells. Availability of combined localization and functional assays would greatly improve cell biology and drug modulation studies for this transporter. Here we demonstrate that an N-terminally GFP-tagged version of the protein (GFP-G2) can be used to directly monitor ABCG2 expression, dimerization, localization and function in living cells. GFP-G2 is fully functional when tested for drug-stimulated ATPase activity, vesicular transport assay, subcellular localization or cell surface epitope conformational changes. By measuring both GFP and Hoechst 33342 dye fluorescence in HEK-293 cells, we provide evidence that a real-time transport assay can be reliably applied to identify ABCG2 substrates, transport modulators, as well as to monitor the cellular functions of this multidrug transporter protein. This approach also avoids the need of cloning, drug selection or other further separation or characterization of the transgene-expressing cells.  相似文献   

16.
Human kallikrein 5 (KLK5) is a member of the human kallikrein gene family of serine proteases. Preliminary results indicate that the protein, hK5, may be a potential serological marker for breast and ovarian cancer. Other studies implicate hK5 with skin desquamation and skin diseases. To gain further insights on hK5 physiological functions, we studied its substrate specificity, the regulation of its activity by various inhibitors, and identified candidate physiological substrates. After producing and purifying recombinant hK5 in yeast, we determined the k(cat)/K(m) ratio of the fluorogenic substrates Gly-Pro-Arg-AMC and Gly-Pro-Lys-AMC, and showed that it has trypsin-like activity with strong preference for Arg over Lys in the P1 position. The serpins alpha(2)-antiplasmin and antithrombin were able to inhibit hK5 with an inhibition constant (k(+2)/K(i)) of 1.0 x 10(-) (2)and 4.2 x 10(-4) m(-1) min(-1), respectively. No inhibition was observed with the serpins alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, although alpha(2)-macroglobulin partially inhibited hK5 at high concentrations. We also demonstrated that hK5 can efficiently digest the extracellular matrix components, collagens type I, II, III, and IV, fibronectin, and laminin. Furthermore, our results suggest that hK5 can potentially release (a) angiostatin 4.5 from plasminogen, (b) "cystatin-like domain 3" from low molecular weight kininogen, and (c) fibrinopeptide B and peptide beta15-42 from the Bbeta chain of fibrinogen. hK5 could also play a role in the regulation of the binding of plasminogen activator inhibitor 1 to vitronectin. Our findings suggest that hK5 may be implicated in tumor progression, particularly in invasion and angiogenesis, and may represent a novel therapeutic target.  相似文献   

17.
Liu Q  Liu J  Cao Q  Sha J  Zhou Z  Wang H  Li J 《Biochemical genetics》2006,44(7-8):409-423
By hybridizing human adult testis cDNA microarrays with human adult and embryo testis cDNA probes, we identified a novel human testis gene, NYD-SP15. NYD-SP15 expression was 3.26-fold higher in adult than in fetal testis; however, there was almost no NYD-SP15 expression in the sperm. NYD-SP15 comprises 3364 base pairs, including a 1545 bp open reading frame encoding a 514 amino acid protein possessing 89% sequence identity with the mouse testis homologous protein. NYD-SP15 is located on human chromosome 13q14.2. The deduced structure of the protein contains two dCMP_cyt_deam domains, indicating a potential functional role for zinc ion binding. The gene is expressed variably in a wide range of tissues, with high expression levels in the testis. Sequence analysis revealed that NYD-SP15 is not a highly conserved protein, with its distribution in high-level species such as vertebrates including Homo, Mus, Rattus, and Canis. The results of semiquantitative polymerase chain reaction in mouse testis representing different developmental stages indicate that NYD-SP15 expression was developmentally regulated. These results suggest the putative NYD-SP15 protein may play an important role in testicular development and spermatogenesis and may be an important factor governing male infertility.  相似文献   

18.
Photosystem II core dimers (450 kDa) and monomers (230 kDa) consisting of CP47, CP43, the D1 and D2 proteins, the extrinsic 33-kDa subunit, and the low molecular weight polypeptides PsbE, PsbF, PsbH, PsbI, PsbK, PsbL, PsbTc, and PsbW were isolated by sucrose density gradient centrifugation. The photosystem II core dimers were treated with phospholipase A2 (PL-A2), which cuts phosphatidylglycerol (PG) and phosphatidylcholine molecules at the sn-2 position. The PL-A2-treated dimers dissociated into two core monomers and further, yielding a CP47-D1-D2 subcomplex and CP43. Thin layer chromatography showed that photosystem II dimers contained four times more PG than their monomeric counterparts but with similar levels of phosphatidylcholine. Consistent with this was the finding that, compared with monomers, the dimers contained a higher level of trans-hexadecanoic fatty acid (C16:1Delta3tr), which is specific to PG of the thylakoid membrane. Moreover, treatment of dimers with PL-A2 increased the free level of this fatty acid specific to PG compared with untreated dimers. Further evidence that PG is involved in stabilizing the dimeric state of photosystem II comes from reconstitution experiments. Using size exclusion chromatography, it was shown that PG containing C16:1Delta3tr, but not other lipid classes, induced significant dimerization of isolated photosystem II monomers. Moreover, this dimerization was observed by electron crystallography when monomers were reconstituted into thylakoid lipids containing PG. The unit cell parameters, p2 symmetry axis, and projection map of the reconstituted dimer was similar to that observed for two-dimensional crystals of the native dimer.  相似文献   

19.
20.
Spectrophotometric data have been determined for mesoferrihaem at several pH values and over a range of concentration covering four orders of magnitude. The data reveal a dimerization process according to the equation 2 monomer ? dimer + H+, analogous to earlier findings for deuteroferrihaem and protoferrihaem. The value of K (defined as K = [dimer][H+][monomer])2) was found to be 6.92 · 10?2. This is close to the value for deuteroferrihaem but much less than that for protoferrihaem. This is interpreted in terms of possible additional bonding between the delocalized electron systems in protoferrihaem dimers relative to those of mesoferrihaem and deuteroferrihaem.Rate constants for dimerization were determined by temperature-jump spectrophotometry. The pH dependence of the rate constants is explained in terms of two distinct pathways for the dimerization process. These involve either direct reaction between two undissociated monomer molecules or alternatively an initial acid dissociation of a monomer molecule followed by reaction between an undissociated and a dissociated molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号