首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The kinetics of 45Ca2+ uptake, efflux, and calcium potentiation of amylase release by slices of rat parotid glands were examined. Pretreatment of the tissue with 11.25 mM 45Ca2+ medium increased the total tissue 45calcium content. Lanthanum (1 mM) decreased tissue uptake, blocked the slow components of exchange and appeared to inhibit transcellular calcium movement. Neither dibutyryl cyclic AMP nor caffeine caused consistently significant effects on 45Ca2+ kinetics, or total 45calcium content. Carbamylcholine increased the initial rate of 45Ca2+ uptake, but had no effect on total uptake.Elevation of the extracellular Ca2+ concentration to 11.25 mM during stimulation of amylase release resulted in an initial decrease in the rate of amylase release followed by a potentiation of release which developed slowly, requiring 40–50 min to reach the maximal response.The inability to detect release-related changes in either calcium influx or mobilization, and the lengthy times and high Ca2+ concentrations required to achieve calcium potentiation suggests that calcium does not couple amylase release.  相似文献   

2.
Rat parotid acinar cells dispersed by a combination of enzymatic treatments remain sensitive to adrenergic and cholinergic agonists. Previous studies have implicated Ca2+ in both adrenergic and cholinergic responses. This paper describes the effects of adrenergic and cholinergic stimulation upon 45Ca2+ fluxes in isolated parotid acinar cells. Suspensions of dispersed cells took up 45Ca2+ from the medium. The net rate of isotope influx was increased by the adrenergic agonists epinephrine, norepinephrine, isoproterenol, and phenylephrine, and by the cholinergic agonists acetylcholine and carbamylcholine. In 1 mM Ca2+, epinephrine was capable of increasing the 45Ca2+ influx in 40 min to three times that of resting cells. Isoproterenol, a beta-adrenergic agonist, was only half as effective as epinephrine in stimulating maximal calcium uptake although it was equally effective in stimulating maximal amylase release in the same cells. Experiments with the alpha-adrenergic antagonist phentolamine, the beta-adrenergic antagonist propranolol, and the cholinergic antagonist atropine confirmed that alpha- and beta-adrenergic and cholinergic stimulation each had a direct stimulatory effect on 45Ca2+ uptake. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate also caused some stimulation of net calcium uptake. Direct measurement of Ca2+ efflux indicated that the increased calcium uptake in the presence of epinephrine was not the indirect result of a decrease in efflux. The rates of both basal and epinephrine-stimulated calcium uptake increased with increasing calcium concentration in the medium. Epinephrine had little effect on the rate of calcium uptake at 0.15 mM Ca2+. Although the energy poison NaCN had little effect on the basal rate of calcium uptake, the stimulable component of calcium uptake was inhibited by NaCN at all calcium concentrations tested (0.2 to 4.1 mM).  相似文献   

3.
The involvement of calcium, ATP, and cyclic AMP-dependent protein kinase activity in the release of amylase from rat parotid glands was examined. Pretreatment of the glandular tissue in 11.25 mM Ca2+ medium potentiated the secretory responses to: dibutyryl cyclic AMP, elevation of the extracellular K+ concentration, reduction of the H+ concentration, La3+, and caffeine. Uncoupling of oxidative phosphorylation blocked release induced by dibutyryl cyclic AMP, K+, and reduction of H+, but had no effect on La3+, caffeine or tolbutamide-stimulated release. Inhibition of cyclic AMP-dependent protein kinase activity blocked only dibutyryl cyclic AMP-induced release and did not inhibit the responses to K+, reduction of H+ or caffeine. The loss of lactate dehydrogenase was used to access the integrity of the tissue during amylase release. No significant increase in the release of lactate dehydrogenase was observed during the secretory responses to: dibutyryl cyclic AMP, La3+, caffeine, or tolbutamide. Triton X-100 and ethanol increased the efflux of both amylase and lactate dehydrogenase. The differential involvement of Ca2+, ATP, and cyclic AMP-dependent protein kinase activity in amylase release induced by the various secretagogues suggests that three types of reactions are involved in the release of amylase.  相似文献   

4.
Voltage-dependent 45Ca2+ uptake and endogenous norepinephrine (NE) release were measured simultaneously in synaptosomes isolated from rat hypothalamus, brainstem, and cerebellum at 1, 3, 5, 15, and 30 s. In synaptosomes depolarized by 125 mM KCl, 45Ca2+ uptake and NE release exhibited fast and slow components. Rates of NE release and 45Ca2+ uptake were fastest from 0 to 1 s. NE release and 45Ca2+ uptake rates from 1 to 5 s were less than 15% of 0-1 s rates. Both resting (5 mM KCl) and depolarization-induced (125 mM KCl) NE release paralleled 45Ca2+ uptake from 1 to 30 s. Voltage-dependent NE release was approximately 1% and 2% of total synaptosomal NE content at 1- and 30-s measurement intervals, respectively, and did not differ between the three brain regions studied. Calcium and potassium dependence studies showed that NE release was stimulated by increased potassium and that depolarization-induced NE release was dependent on the presence of external calcium. These results show that calcium-dependent NE release from synaptosomes is correlated with calcium entry. Both processes exhibit fast and slow temporal components.  相似文献   

5.
Microdissected beta-cell-rich pancreatic islets of non-inbred ob/ob mice were used in studies of how perchlorate (CIO4-) affects stimulus-secretion coupling in beta-cells. CIO4- at 16 mM potentiated D-glucose-induced insulin release, without inducing secretion at non-stimulatory glucose concentrations. The potentiation mainly applied to the first phase of stimulated insulin release. In the presence of 20 mM-glucose, the half-maximum effect of CIO4- was reached at 5.5 mM and maximum effect at 12 mM of the anion. The potentiation was reversible and inhibitable by D-mannoheptulose (20 mM) or Ca2+ deficiency. CIO4- at 1-8 mM did not affect glucose oxidation. The effects on secretion were paralleled by a potentiation of glucose-induced 45Ca2+ influx during 3 min. K+-induced insulin secretion and 45Ca2+ uptake were potentiated by 8-16 mM-CIO4-. The spontaneous inactivation of K+-induced (20.9 mM-K+) insulin release was delayed by 8 mM-CIO4-. The anion potentiated the 45Ca2+ uptake induced by glibenclamide, which is known to depolarize the beta-cell. Insulin release was not affected by 1-10 mM-trichloroacetate. It is suggested that CIO4- stimulates the beta-cell by affecting the gating of voltage-controlled Ca2+ channels.  相似文献   

6.
The permeability of neuronal membranes to Ca2+ is of great importance for neurotransmitter release. The temporal characteristics of Ca2+ fluxes in intact brain neurons have not been completely defined. In the present study 45Ca2+ was used to examine the kinetics of Ca2+ influx and efflux from unstimulated and depolarized rat brain neurons in culture. Under steady-state conditions three cellular exchangeable Ca2+ pools were identified in unstimulated cells: 1) a rapidly exchanging pool (t1/2 = 7 s) which represented about 10% of the total cellular Ca2+ and was unaffected by the presence of Co2+, verapamil, or tetrodotoxin; 2) a slowly exchanging pool (t1/2 = 360 s) which represented 42% of the total cellular Ca2+ and was inhibited by Co2+, but not by verapamil or tetrodotoxin; 3) a very slowly exchanging pool (t1/2 = 96 min) which represented 48% of the total cell Ca2+ was observed only in the prolonged efflux experiments. The rate of exchange of 45Ca2+ in the unstimulated cells was dependent on the extracellular Ca2+ concentration (half-saturation at 70 microM). Depolarization of the neurons with elevated K+ causes a rapid and sustained 45Ca2+ uptake. The cellular Ca2+ content increased from 56 nmol/mg protein in unstimulated cells to 81 nmol/mg protein during 5 min of depolarization. The kinetics of the net 45Ca2+ uptake by the stimulated neurons was consistent with movement of the ion with a first order rate constant of 0.0096 s-1 (t1/2 = 72 s) into a single additional compartment. The other cellular Ca2+ pools were apparently unaffected by stimulation. The stimulated 45Ca2+ uptake was inhibited by Co2+ and by the Ca2+ channel blocker verapamil but not by the Na+ channel blocker tetrodotoxin. Ca2+ uptake into this compartment was dependent on the extracellular Ca2+ concentration (half-saturation at 0.80 mM Ca2+). Predepolarization of the cells with high K+ for 10-60 s prior to the addition of the radioactive calcium did not alter the rate of 45Ca2+ incorporation into the stimulated cells. It is concluded that the rapidly exchanging, the slowly exchanging, and the depolarization-induced Ca2+ pools observed in intact brain neurons are physically as well as kinetically distinct from each other. In addition, the depolarization-induced component observed in stimulated cells represents movement of the Ca2+ ions through a single class of voltage-sensitive Ca2+ channels. These Ca2+ channels are inhibited by Co2+ ions and by verapamil and are not inactivated during depolarization of the brain neurons.  相似文献   

7.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

8.
The role of calcium in the release of superoxide anion (O2-) was examined in alveolar macrophages after stimulation with the soluble stimuli: concanavalin A (Con A), N-formyl methionyl phenylalanine (FMP), and the calcium ionophore. A23187. The release of O2- by Con A was unaffected over a wide range of extracellular calcium concentrations (20 microM to 3 mM), whereas increasing the extracellular calcium above 2 mM inhibited FMP-stimulated O2- release. In contrast, A23187 did not stimulate O2- release in calcium-free medium (less than or equal to 30 microM). The addition of EGTA (50 microM) to calcium-free medium had no effect on Con A stimulation of O2- release or FMP-stimulated O2- release. These results suggest that, for the three soluble stimuli, there are different roles for Ca+2 in the activation and transmission of stimulatory signals across the cell membrane. Con A- or FMP-stimulated calcium efflux from calcium-loaded cells in either calcium-free medium or 0.5 mM calcium-containing medium. In calcium-free medium, FMP transiently retarded 45Ca+2 uptake, while in 0.5 mM calcium-containing medium, FMP transiently stimulated 45Ca+2 uptake. For either Con A or FMP, calcium efflux preceded O2- release by 30-45 sec. Quinine, an agent that blocks membrane hyperpolarization in macrophages, completely blocked O2- release by concanavalin A or FMP and inhibited 45CA+2 efflux by 50% or more for both agents. These results support the hypothesis that redistribution of cellular Ca+2 is one of the initial steps leading to the release of O2-.  相似文献   

9.
A cell line originating from the fetal rat aorta has been studied with respect to 45Ca2+ uptake. Kinetic experiments showed an initial rapid uptake followed by a slow linear phase; both the initial rate and the maximum uptake were increased in the presence of 55 mM potassium chloride. The calcium channel antagonists, darodipine (PY 108-068) and verapamil, inhibited both the basal and the potassium chloride stimulated uptake. Neither tetrodotoxin nor furosemide affected either basal or depolarisation induced 45Ca2+ uptake. Blockade of the Na+/K+ ATPase by ouabain and of the Ca2+ ATPase by vanadate caused a net increase in cellular 45Ca2+ accumulation.  相似文献   

10.
Both dibutyryl cAMP and carbachol stimulated amylase released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 microM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 microM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

11.
The effects of HgCl2 and ouabain on vasopressin release and Ca2+ uptake and distribution was examined in the neurointermediate lobe of the rat pituitary. HgCl2 (0.5 mM) inhibited vasopressin release by approx. 90% in both basal and potassium depolarized states. With 0.1 mM HgCl2 vasopressin release was inhibited by 50% in the depolarized state, but release was not effected in basal state. On the other hand, ouabain (0.5 mM) caused a 3-fold stimulation of vasopressin release in the depolarized state. Both HgCl2 (0.5 mM) and ouabain (0.5 mM) increased net 45Ca+2 uptake by about 80% in groups of neurointermediate lobes. Following 45Ca+2 uptake, HgCl2 (0.5 mM), which is absorbed by the neurointermediate lobe, produced an increase in cytosolic 45Ca+2 content and a decrease in mitochondrial 45Ca+2 content compared to control. In comparison, ouabain (0.5 mM), which does not penetrate the neurointermediate lobe, gave no change in cytosolic 45Ca+2, but an increase in mitochondrial 45Ca+2. These results suggest that HgCl2 inhibits vasopressin release from the neurointermediate lobe of the rat pituitary at a point distal to Ca+2 uptake by the gland.  相似文献   

12.
The voltage-dependent calcium uptake in rat brain synaptosomes was measured under conditions in which [Ca2+]o/[Na+]i exchange was minimized to characterize the voltage-sensitive calcium channels from rats of different ages. In solutions of CaCl2 concentrations of less than 500 microM, the initial (5-s) calcium uptake declined by approximately 20-50% in 12- and 24-month-old rats relative to 3-month-old adults. Depolarization of synaptosomes from 3-month-old rats in a calcium-free medium or in the presence of 0.5 mM CaCl2 led to an exponential decline of the calcium uptake rate after 20 s (voltage- or voltage-and-calcium-dependent inactivation) to approximately 66 and 34% of the initial value with a t1/2 of 1.6 or 0.7 s, respectively. The presence of 1 microM nifedipine resulted in a 15-25% reduction of 45Ca2+ uptake rates, which appeared to affect noninactivating calcium channels, but addition of the calcium channel agonist Bay K 8644 was without effect. In 24-month-old rats, inactivation of 45Ca2+ uptake in calcium-free media was nondetectable, and in the presence of 0.5 mM CaCl2, the rate and extent of inactivation were also much lower than in 3-month-old animals (the t1/2 was 0.9 s, and the calcium uptake rate at 20 s was 55% of its initial value). Moreover, the presence of 1 microM nifedipine was without effect on initial calcium uptake or inactivation in synaptosomes from 24-month-old rats. These results indicate that the decrease in calcium channel-mediated 45Ca2+ uptake involves an inhibition or block of both dihydropyridine-resistant and -sensitive calcium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. The evaluation of still more pretentious and complicated methods is accompanied by a decline of methodical knowledge outside of the own technical field. Interpretations or extrapolations are taken as granted without critical examination of the methodical steps applied. An example is given by re-evaluating the 45Ca release from isolated cardiac tissue and the possible interpretations. 2. 45Ca release and tissue Ca content were measured in isolated guinea-pig left atria during Ca equilibrium and under conditions known to induce net Ca movements. 3. At equilibrium condition (1.8 mM Na2+0) 3 exponential phase of 45Ca release from the atria were observed. The compartments contained 61%, 29% and 10% of total 45Ca; the t1/2 were 2, 12 and 90 min, respectively. 4. The release of 45Ca from the slowly exchanging compartment (t1/2 90 min) decreased during incubation in nominal Ca-free solution, although a net loss of tissue Ca occurred. Addition of EGTA (5 x 10(-5) M) to the washout medium abolished this retardation of 45Ca release. 5. At external Na+ concentrations below 40 mM (substituted by sucrose), the 45Ca release from the slowly exchanging compartment decreased. Simultaneously, the tissue Ca content increased massively. The 45Ca release was further reduced in Na-poor, nominal Ca-free solution. Under both conditions, the presence of EGTA in the washout medium normalized the rate of 45Ca release. 6. The results suggest that the apparent decline of 45Ca release from intact atria upon reduction of the external Ca and Na concentration does not reflect a decrease of the cellular efflux rate, but is the consequence of an enhanced re-uptake of 45Ca from the extracellular space into the myocardial cells. The probability for the released 45Ca either to escape into the organ bath or to become reabsorbed depends on the specific radioactivity of 45Ca in the extracellular space during the washout phase. Thus, this experimental procedure is not suited to demonstrate a Na-Ca exchange at the cardiac sarcolemma.  相似文献   

14.
The involvement of calcium, ATP, and cyclic AMP-dependent protein kinase activity in the release of amylase from rat parotid glands was examined. Pretreatment of the glandular tissue in 11.25 mM Ca2+ medium potentiated the secretory responses to: dibutyryl cyclic AMP, elevation of the extracellular K+ concentration, reduction of the H+ concentration, La3+, and caffeine. Uncoupling of oxidative phosphorylation blocked release induced by dibutyryl cyclic AMP, K+, and reduction of H+, but had no effect on La3+, caffeine or tolbutamide-stimulated release. Inhibition of cyclic AMP-dependent protein kinase activity blocked only dibutyryl cyclic AMP-induced release and did not inhibit the responses to K+, reduction of H+ or caffeine.The loss of lactate dehydrogenase was used to access the integrity of the tissue during amylase release. No significant increase in the release of lactate dehydrogenase was observed during the secretory responses to: dibutyryl cyclic AMP, La3+, caffeine, or tolbutamide. Triton X-100 and ethanol increased the efflux of both amylase and lactate dehydrogenase.The differential involvement of Ca2+, ATP, and cyclic AMP-dependent protein kinase activity in amylase release induced by the various secretagogues suggests that three types of reactions are involved in the release of amylase.  相似文献   

15.
1. Mitochondrial and microsomal fractions were prepared from rat parotid glands. Both fractions were able to take up (45)Ca. The mitochondrial (45)Ca-uptake system could be driven by ATP (energy-coupled Ca(2+) uptake) or by ADP+succinate (respiration-coupled Ca(2+) uptake). Energy-coupled Ca(2+) uptake was blocked by oligomycin but not by carbonyl cyanide m-chlorophenylhydrazone; respiration-coupled Ca(2+) uptake was blocked by carbonyl cyanide m-chlorophenylhydrazone but not by oligomycin. Microsomal Ca(2+) uptake was dependent on the presence of ATP; the ATP-dependent Ca(2+) uptake was not affected by oligomycin or carbonyl cyanide m-chlorophenylhydrazone. Ca(2+) uptake by both fractions was inhibited by Ni(2+). 2. Incubation of parotid pieces with adrenaline increased the rate of release of amylase and the uptake of (45)Ca. The adrenaline-stimulated release of amylase was not dependent on the presence of extracellular Ca(2+). 3. The effect of adrenaline on the subcellular distribution of (45)Ca in parotid pieces incubated with (45)Ca was studied. In parotid tissue incubated with (45)Ca, both mitochondrial and microsomal fractions contained (45)Ca. Incubation with adrenaline increased the amount of (45)Ca incorporated into the mitochondrial fraction but not the microsomal fraction. In parotid tissue preloaded with (45)Ca subsequent incubation with adrenaline caused a decrease in the amount of (45)Ca found in both the mitochondrial and microsomal fractions. 4. From these data we conclude that the regulation of the cytosolic Ca(2+) concentration in the parotid may involve both mitochondrial and microsomal Ca(2+)-uptake systems. We suggest that the action of adrenaline on the parotid may be to increase the movement of Ca(2+) to the cytosol by increasing the flux of Ca(2+) across mitochondrial, microsomal and plasma membranes.  相似文献   

16.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

17.
1. A study has been made of the relationship between 45Ca uptake into and hormone release from isolated rat neurohypophyses incubated in vitro. 2. Hormone secretion is triggered by high-K (56 mM) but long exposure to the stimulus does not generate a maintained release of hormone. 3. When hormone release began to wane, addition of Ba of La increased hormone output which suggests that the decline in output did not result from depletion of the neurosecretory granules at the nerve terminals. 4. 45Ca uptake is enhanced in the presence of high-K concentration, but the initial high rate declines during long exposure to the potassium stimulus with a time constant similar to that of the decline in hormone release. 5. After a period of incubation in a K-rich, calcium-free medium, addition of calcium to the medium induced hormone release. The magnitude of this release was dependent on the time of exposure to excess potassium. 6. After inactivation of secretion, mobilization of internal calcium by means of a calcium ionophore increased hormone release.  相似文献   

18.
The effects of pentobarbitone on the transport of 45Ca2+ by rat brain mitochondria were studied, using the Ruthenium Red-EGTA quench technique. In the presence of succinate and inorganic phosphate, mitochondria rapidly accumulate 45Ca2+. Pentobarbitone (0.1-1.0 mM) stimulates the initial rate of Ca2+ transport. In contrast, pentobarbitone (1 mM) did not affect the NaCl (50 mM)-induced efflux of 45Ca2+ from mitochondria. Dibucaine (60 micro M), a clinically used local anaesthetic, inhibits both 45Ca2+ uptake an efflux. The results suggest that barbiturate stimulation of mitochondrial Ca2+ uptake may, in combination with effects on other Ca2+ sequestering processes, contribute to the inhibitor of transmitter release observed at a number of synapses.  相似文献   

19.
To determine the role of free cytosolic calcium ([Ca+2]i) in stimulated enzyme secretion from exocrine pancreas, we determined the effects of various pancreatic secretagogues on [Ca+2]i and amylase release in dispersed acini from the guinea pig pancreas. Cholecystokinin-octapeptide (CCK-OP), carbachol, and bombesin, but not vasoactive intestinal peptide, stimulated rapid increases in [Ca+2]i from 100 to 600-800 nM that were independent of extracellular calcium. The increases in [Ca+2]i were transient (lasting less than 5 min) and correlated with an initial rapid phase of amylase release. After 5 min, secretagogue-stimulated amylase release occurred at basal [Ca+2]i. Carbachol pretreatment of the acini abolished the effects of CCK-OP and bombesin on [Ca+2]i and the initial rapid phase of amylase release. 4 beta-phorbol 12-myristate 13-acetate (PMA) had no effect on [Ca+2]i but stimulated an increase in amylase release. The addition of CCK-OP or A23187 to PMA-stimulated acini caused an increase in [Ca+2]i and PMA-stimulated amylase release only during the first 5 min after addition of these agents. These results indicate that CCK-OP, carbachol, and bombesin release calcium from an intracellular pool, resulting in a transient increase in [Ca+2]i and that this increase in [Ca+2]i mediates enzyme secretion during the first few minutes of incubation. The results with PMA suggest that secretagogue-stimulated secretion not mediated by increased [Ca+2]i (sustained secretion) is mediated by 1,2-diacylglycerol.  相似文献   

20.
Fast Ca2+ uptake into K+-depolarized cultured bovine adrenal chromaffin cells has been isotopically measured in a time scale of 1-10 s. Depolarized cells retained as much as 80-fold 45Ca2+ taken up by resting cells; Ca2+ was not taken up by fibroblasts or endothelial-like cells. Because Ca2+ entry was inhibited by inorganic (La3+, Co2+, Mg2+) and organic (nifedipine) Ca2+ channel antagonists and enhanced by the Ca2+ channel activator Bay-K-8644, it seems clear that Ca2+ gains access to the chromaffin cell cytosol mainly through specific voltage-dependent Ca2+ channels. Ca2+ uptake evoked by 59 mM K+ was linear during the first 5 s of stimulation and continued to rise at a much slower rate up to 60 s. The rate of Ca2+ entry became steeper as the external [Ca2+] increased; initial rates of Ca2+ uptake varied from 0.06 fmol/cells . s at 0.125 mM Ca2+ to 2.85 fmol/cell . s at 7.5 mM Ca2+. The early 90Sr2+ uptake was linear but faster than Ca2+ uptake and later on was also saturated; 133Ba2+ was taken up still at a much faster rate and was linear for the entire depolarization period (2-60 s). Increased [K+] gradually depolarized chromaffin cells; Ca2+ and Sr2+ uptakes were not apparent below 30 mM K+ but were linear for 30 to 60 mM K+. In contrast, substantial Ba2+ uptake was seen even in K+-free solutions; and in 5.9 mM K+, Ba2+ uptake was as high as Ca2+ uptake obtained in 60 mM K+. Five to ten-second pulses of 45Ca2+, 90Sr2+, or 133Ba2+ given at different times after pre-depolarization of chromaffin cells served to analyze the kinetics of inactivation of the rates of entry of each divalent cation. Inactivation of Ca2+ uptake was faster than Sr2+, and Ba2+ uptake inactivated very little. Neither voltage changes nor Ca2+ ions passing through the channels seems to cause their inactivation; however, experiments aimed to manipulate the levels of internal Ca2+ using the cell-permeable chelator Quin-2 or the ionophore A23187 strongly suggest that intracellular Ca2+ levels determine the rates of inactivation of these channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号