首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accelerated tree growth under elevatedatmospheric CO2 concentrations may influencenutrient cycling in forests by (i) increasingthe total leaf area, (ii) increasing the supplyof soluble carbohydrate in leaf tissue, and (iii) increasing nutrient-use efficiency. Here wereport the results of intensive sampling andlaboratory analyses of NH 4 + , NO 3 , PO 4 3– , H+, K+, Na+,Ca2+, Mg2+, Cl, SO 4 2– , and dissolved organic carbon (DOC) in throughfallprecipitation during the first 2.5+ years of the DukeUniversity Free-Air CO2 Enrichment (FACE)experiment. After two growing seasons, a largeincrease (i.e., 48%) in throughfall deposition of DOCand significant trends in throughfall volume and inthe deposition of NH 4 + , NO 3 , H+, and K+ can be attributed to the elevatedCO2 treatment. The substantial increase indeposition of DOC is most likely associated withincreased availability of soluble C in plant foliage,whereas accelerated canopy growth may account forsignificant trends toward decreasing throughfallvolume, decreasing deposition of NH 4 + ,NO 3 , and H+, and increasing deposition of K+ under elevated CO2. Despiteconsiderable year-to-year variability, there wereseasonal trends in net deposition of NO 3 ,H+, cations, and DOC associated with plant growthand leaf senescence. The altered chemical fluxes inthroughfall suggest that soil solution chemistry mayalso be substantially altered with continued increasesin atmospheric CO2 concentrations in the future.  相似文献   

2.
The Cl/HCO 3 exchange mechanism usually postulated to occur in gastric mucosa cannot account for the Na+-dependent electrogenic serosal to mucosal Cl transport often observed. It was recently suggested that an additional Cl transport mechanism driven by the Na+ electrochemical potential gradient may be present on the serosal side of the tissue. To verify this, we have studied Cl transport in guinea pig gastric mucosa. Inhibiting the (Na+, K+) ATPase either by serosal addition of ouabain or by establishing K+-free mucosal and serosal conditions abolished net Cl transport. Depolarizing the cell membrane potential with triphenylmethylphosphonium (a lipid-soluble cation), and hence reducing both the Na+ and Cl electrochemical potential gradients, resulted in inhibition of net Cl flux. Reduction of short-circuit current on replacing Na+ by choline in the serosal bathing solution was shown to be due to inhibition of Cl transport. Serosal addition of diisothiocyanodisulfonic acid stilbene (an inhibitor of anion transport systems) abolished net Cl flux but not net Na+ flux. These results are compatible with the proposed model of a Cl/Na+ cotransport mechanism governing serosal Cl entry into the secreting cells. We suggest that the same mechanism may well facilitate both coupled Cl/Na+ entry and coupled HCO 3 /Na+ exit on the serosal side of the tissue.  相似文献   

3.
Summary The unidirectional Na+, Cl, and urea fluxes across isolated opercular epithelia from seawater-adaptedFundulus heteroclitus were measured under different experimental conditions. The mean Na+, Cl, and urea permeabilities were 9.30×10–6 cm·sec–1, 1.24×10–6 cm·sec–1, and 5.05×10–7 cm·sec–1, respectively. The responses of the unidirectional Na+ fluxes and the Cl influx (mucosa to serosa) to voltage clamping were characteristic of passively moving ions traversing only one rate-limiting barrier. The Na+ conductance varied linearly with, and comprised a mean 54% of, the total tissue ionic conductance. The Cl influx and the urea fluxes were independent of the tissue conductance. Triaminopyrimidine (TAP) reduced the Na+ fluxes and tissue conductance over 70%, while having no effect on the Cl influx or urea fluxes. Mucosal Na+ substitution reduced the Na+ permeability 60% and the tissue conductance 76%, but had no effect on the Cl influx or the urea fluxes. Both the Na+ and Cl influxes were unaffected by respective serosal substitutions, indicating the lack of any Na+/Na+ and Cl/Cl exchange diffusion.The results suggest that the unidirectional Na+ fluxes are simple passive fluxes proceeding extracellularly (i.e., movement through a cation-selective paracellular shunt). This pathway is dependent on mucosal (external) Na+, independent of serosal (internal) Na+, and may be distinct from the transepithelial Cl and urea pathways.  相似文献   

4.
Summary In rabbit gallbladder epithelium, a Na+/H+, Cl/HCO 3 double exchange and a Na+–Cl symport are both present, but experiments on intact tissue cannot resolve whether the two transport systems operate simultaneously. Thus, isolated apical plasma membrane vesicles were prepared. After preloading with Na+, injection into a sodium-free medium caused a stable intravesicular acidification (monitored with the acridine orange fluorescence quenching method) that was reversed by Na+ addition to the external solution. Although to a lesser extent, acidification took place also in experiments with an electric potential difference (PD) equal to 0. If a preset pH difference (pH) was imposed ([H+]in>[H+]out, PD=0), the addition of Na-gluconate to the external solution caused pH dissipation at a rate that followed saturation kinetics. Amiloride (10–4 m) reduced the pH dissipation rate. Taken together, these data indicate the presence of Na+ and H+ conductances in addition to an amiloride-sensitive, electroneutral Na+/H+ exchange.An inwardly directed [Cl] gradient (PD=0) did not induce intravesicular acidification. Therefore, in this preparation, there was no evidence for the presence of a Cl/OH exchange.When both [Na+] and [Cl] gradients (outwardly directed, PD=0) were present, fluorescence quenching reached a maximum 20–30 sec after vesicle injection and then quickly decreased. The decrease was not observed in the presence of a [Na+] gradient alone or the same [Na+] gradient with Cl at equal concentrations at both sides. Similarly, the decrease was abolished in the presence of both Na+ and Cl concentration gradients and hydrochlorothiazide (5×10–4 m). The decrease was not influenced by an inhibitor of Cl/OH exchange (10–4 m furosemide) or of Na+–K+–2Cl symport (10–5 m bumetanide).We conclude that a Na+/H+ exchange and a Na+–Cl symport are present and act simultaneously. This suggests that in intact tissue the Na+–Cl symport is also likely to work in parallel with the Na+/H+ exchange and does not represent an induced homeostatic reaction of the epithelium when Na+/H+ exchange is inhibited.  相似文献   

5.
Total content of water, extracellular space (ES), Na+, K+, and Cl in the isolated chick retina were measured in the presence (test) or absence (control) of spreading depression (SD). During SD in medium with 0.5 mM or 2 mM MgSO4, there is an increase in the intracellular concentration of Na+ and Cl and a decrease in the intracellular concentration of K+. A decrease in the ES was only found in the medium with 2 mM MgSO4 together with a diminshed outmovement of K+. We suggest that a decrease in the ES is due to an increased absorption of K+ by the Muller cells, causing its swelling and consequently a decrease of the ES.The addition of sucrose (17 mM) to the incubation medium as the extracellular marker markedly decreased the intracellular concentration of Cl in control retinas, blocked the inward movement of this ion to the tissue during SD and also changed the K+ movement during the phenomenon in medium with 2 mM MgSO4. We suggest that Cl is an important ion in the ionic balance of the Muller cells and that sucrose must have its site of action that these cells.  相似文献   

6.
Summary Simultaneous measurements of net ion and water fluxes were made in the stripped intestine of the seawater eel, and the relationship between Na+, K+, Cl and water transport were examined in the presence of mucosal KCl and serosal NaCl Ringer (standard condition). When Cl was removed from both sides of the intestine, net K+ flux from mucosa to serosa was reduced, accompanied by complete blockage of water absorption. Since it has been shown that net Cl and water fluxes depend on K+ transport under the standard condition (Ando 1983), the interdependence of K+ and Cl transport suggests the existence of a coupled KCl transport system, while the parallelism between the net Cl and water fluxes suggests that water absorption is linked to the coupled KCl transport. The coupled KCl and water transport were inhibited by treatment with ouabain or with Na+-free Ringer solutions, suggesting the existence of a Na+-dependent KCl transport system and linkage of water absorption to the coupled Na+–K+–Cl transport. Since ouabain blocked the active Na+–K+–Cl transport almost completely, the permeability coefficients for K+ and Na+ through the paracellular shunt pathway were estimated as PK=0.076 and PNa=0.058 cm/h, and PCl was calculated as 0.005 cm/h. Although Na+-independent K+ and Cltt- fluxes were observed again in the present study, these fluxes were not inhibited by CN, ouabain or diuretics, and evoked even after blocking the Na+–K+–Cl transport completely with ouabain. These results indicate that the Na+-independent K+ and Cl fluxes are distinct from the active Na+–K+–Cl transport and are not themselves active.  相似文献   

7.
Summary The ion permeability of rabbit jejunal brush border membrane vesicles was studied by measuring unidirectional fluxes with radioactive tracers and bi-ionic diffusion potentials with the potential-sensitive fluorescent dye, diS–C3-(5). Tracer measurements provide estimates of the absolute magnitudes of permeability coefficients, while fluorescence measurements provide estimates of relative and absolute ion permeabilities. The magnitudes of the permeability coefficients for Na+, K+, Rb+, and Br were approximately 5 nanoliters/(mg protein × sec) or 10–5 cm/sec as determined by radioactive tracer measurements. The apparent selectivity sequence, relative to Na+, as determined by bi-ionic potential measurements was: F, isetheionate, gluconate, choline (<0.1)+(1.0)–(1.5)=NO 3 (1.5)–(2.3)+(2.4)+(2.5)+(2.6)+(3.9) 4 +(12)–(40). The origin of this selectivity sequence and its relationship to the ion permeability of the brush border membrane in the intact epithelium are discussed.  相似文献   

8.
Summary Bicarbonate presence in the bathing media doubles Na+ and fluid transepithelial transport and in parallel significantly increases Na+ and Cl intracellular concentrations and contents, decreases K+ cell concentration without changing its amount, and causes a large cell swelling. Na+ and Cl lumen-to-cell influxes are significantly enhanced, Na+ more so than Cl. The stimulation does not raise any immediate change in luminal membrane potential and cannot be due to a HCO 3 -ATPase in the brush border. The stimulation goes together with a large increase in a Na+-dependent H+ secretion into the lumen. All of these data suggests that HCO 3 both activates Na+–Cl cotransport and H+–Na+ countertransport at the luminal barrier.Thiocyanate inhibits Na+ and fluid transepithelial transport without affecting H+ secretion and HCO 3 -dependent Na+ influx. It reduces Na+ and Cl concentrations and contents, increases the same parameters for K+, causes a cell shrinking, and abolishes the lumen-to-cell Cl influx. It enters the cell and is accumulated in the cytoplasm with a process which is Na+-dependent and HCO 3 -activated. Thus, SCN is likely to compete for the Cl site on the cotransport carrier and to be slowly transferred by the cotransport system itself.  相似文献   

9.
Summary The interactions between ion and water fluxes have an important bearing on osmoregulation and transepithelial water transport in epithelial cells. Some of these interactions were investigated using ion-selective microelectrodes in theNecturus gallbladder. The intracellular activities of K+ and Cl in epithelial cells change when the epithelium is adapted to transport in solutions of a low osmolarity. In order to achieve new steady states at low osmolarities, cells lost K+, Cl and some unidentified anions. Surprisingly, the apparent K+ concentration remained high: at an external osmolartity of 64 mOsm the intracellular K+ concentration averaged 95mm. This imbalance was sensitive to anoxia and ouabain. The effects of abrupt changes in the external osmolarities on the intracellular activities of Na+, K+ and Cl were also investigated. The gradients were effectuated by mannitol. The initial relative rates of change of the intracellular activities of Na+ and Cl were equal. The data were consistent with Na+ and Cl ions initially remaining inside the cell and a cell membraneL p of 10–3 cm sec–1 osm–1, which is close to the values determine by Spring and co-workers (K.R. Spring, A. Hope & B.-E. Persson, 1981.In: Water Transport Across Epithelia. Alfred Benzon Symposium 15. pp. 190–200. Munskgaard, Copenhagen). The initial rate of change of the intracellular activity of K+ was only 0.1–0.2 times the change observed in Na+ and Cl activities, and suggests that K+ ions leave the cell during the osmotically induced H2O efflux and enter with an induced H2O influx. The coupling is between 98 and 102 mmoles liter–1. Various explanations for the anomalous behavior of intracellular K+ ions are considered. A discussion of the apparent coupling between K+ and H2O, observed in nonsteady states, and its effects on the distribution of K+ and H2O across the cell membrane in the steady states, is presented.  相似文献   

10.
Summary Active transport of potassium in K+-starvedNeurospora was previously shown to resemble closely potassium uptake in yeast,Chlorella, and higher plants, for which K+ pumps or K+/H+-ATPases had been proposed. ForNeurospora, however, potassium-proton cotransport was demonstrated to operate, with a coupling ratio of 1 H+ to 1 K+ taken inward so that K+, but not H+, moves against its electrochemical gradient (Rodriguez-Navarro et al.,J. Gen. Physiol. 87:649–674).In the present experiments, the current-voltage (I–V) characteristic of K+–H+ cotransport in spherical cells ofNeurospora has been studied with a voltage-clamp technique, using difference-current methods to dissect it from other ion-transport processes in theNeurospora plasma membrane. Addition of 5-200 M K+ to the bathing medium causes 10–150 mV depolarization of the unclamped membrane, and yields a sigmoidI–V curve with a steep slope (maximal conductance of 10–30 S/cm2) for voltages of –300 to –100 mV, i.e., in the normal physiologic range. Outside that range the apparentI–V curve of the K+-H+ symport saturates for both hyperpolarization and depolarization. It fails to cross the voltage axis at its predicted reversal potential, however, an effect which can be attributed to failure of theI–V difference method under reversing conditions.In the absence of voltage clamping, inhibitors—such as cyanide or vanadate—which block the primary proton pump inNeurospora also promptly inhibit K+ transport and K+-H+ currents. But when voltage clamping is used to offset the depolarizing effects of pump blockade, the inhibitors have no immediate effect on K+-H+ currents. Thus, the inhibition of K+ transport usually observed with these agents reflects the kinetic effect of membrane depolarization rather than any direct chemical action on the cotransport system itself.Detailed study of the effects of [K+]o and pHo on theI–V curve for K+-H+ symport has revealed that increasing membrane potential systematicallydecreases the apparent affinity of the transporter for K+, butincreases affinity for protons (K m range: for [K+]o, 15–45 M; for [H+]o, 10–35 nM). This behavior is consistent with two distinct reaction-kinetic models, in which (i) a neutral carrier binds K+ first and H+ last in the forward direction of transport, or (ii) a negatively charged carrier (–2) binds H+ first and K+ last.  相似文献   

11.
Summary Ouabain-insensitive, furosemide-sensitive Rb+ influx (J Rb) into HeLa cells was examined as functions of the extracellular Rb+, Na+ and Cl concentrations. Rate equations and kinetic parameters, including the apparent maximumJ Rb, the apparent values ofK m for the three ions and the apparentK i for K+, were derived. Results suggested that one unit molecule of this transport system has one Na+, one K+ and two Cl sites with different affinities, one of the Cl sites related with binding of Na+, and the other with binding of K+(Rb+). A 11 stoichiometry was demonstrated between ouabain-insensitive, furosemidesensitive influxes of22Na+ and Rb+, and a 12 stoichiometry between those of Rb+ and36Cl. The influx of either one of these ions was inhibited in the absence of any one of the other two ions. Monovalent anions such as nitrate, acetate, thiocyanate and lactate as substitutes for Cl inhibited ouabain-insensitive Rb+ influx, whereas sulfamate and probably also gluconate did not inhibitJ Rb. From the present results, a general model and a specialized cotransport model were proposed: 1) In HeLa cells, one Na+ and one Cl bind concurrently to their sites and then one K+ (Rb+) and another Cl bind concurrently. 2) After completion of ion bindings Na+, K+(Rb) and Cl in a ratio of 112 show synchronous transmembrane movements.  相似文献   

12.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

13.
Carl F. Cerco 《Hydrobiologia》1989,174(3):185-194
Empirical models of sediment-water fluxes of NH4 +, NO3 were and PO4 3– were formed based on published reports. The models were revised and parameters evaluated based on laboratory incubations of sediments collected from Gunston Cove, VA. Observed fluxes ranged from — 18 (sediments uptake) to 276 (sediment release) mg NH4 + m–2 day–1, –17 to –509 mg NO3 m–2 day–1, and –16.4 to 8.9 mg PO4 3– m–2 day–1. The model and observations indicated release of NH4 + was enhanced by high temperature and by low DO. Uptake of NO3 was enhanced primarily by high NO3 concentration and to a lesser extent by high temperature and by low DO. Direction of PO4 3– flux depended on concentration in the water. Release was enhanced by low DO. No effect of temperature on PO4 3– flux was observed.  相似文献   

14.
Summary This paper reports experiments designed to assess the relations between net salt absorption and transcellular routes for ion conductance in single mouse medullary thick ascending limbs of Henle microperfusedin vitro. The experimental data indicate that ADH significantly increased the transepithelial electrical conductance, and that this conductance increase could be rationalized in terms of transcellular conductance changes. A minimal estimate (G c min ) of the transcellular conductance, estimated from Ba++ blockade of apical membrane K+ channels, indicated thatG c min was approximately 30–40% of the measured transepithelial conductance. In apical membranes, K+ was the major conductive species; and ADH increased the magnitude of a Ba++-sensitive K+ conductance under conditions where net Cl absorption was nearly abolished. In basolateral membranes, ADH increased the magnitude of a Cl conductance; this ADH-dependent increase in basal Cl conductance depended on a simultaneous hormone-dependent increase in the rate of net Cl absorption. Cl removal from luminal solutions had no detectable effect onG e , and net Cl absorption was reduced at luminal K+ concentrations less than 5mm; thus apical Cl entry may have been a Na+,K+,2Cl cotransport process having a negligible conductance. The net rate of K+ secretion was approximately 10% of the net rate of Cl absorption, while the chemical rate of net Cl absorption was virtually equal to the equivalent short-circuit current. Thus net Cl absorption was rheogenic; and approximately half of net Na+ absorption could be rationalized in terms of dissipative flux through the paracellular pathway. These findings, coupled with the observation that K+ was the principal conductive species in apical plasma membranes, support the view that the majority of K+ efflux from cell to lumen through the Ba++-sensitive apical K+ conductance pathway was recycled into cells by Na+,K+,2Cl cotransport.  相似文献   

15.
The ionic fluxes associated with the ATP-dependent acidification of endocytic vesicles were studied in a preparation isolated from rabbit reticulocytes enriched for transferrin-transferrin receptor complexes. No vesicle acidification was observed in the absence of intra- and extravesicular ions (sucrosein/sucroseout), while maximal acidification was observed with NaClin/KClout·K in + was a poor substitute for Na in + , and Cl out could be replaced by other anions with the following efficacy of acidification: Cl>Br>I>PO 4 3– >gluconate>SO 4 2– . Flux studies using36Cl and22Na+ showed that the vesicles had a permeability for Cl and Na+, and that ATP-dependent H+ pumping was accompanied by a net influx of Cl and a net efflux of Na+ provided that there was a Na+ concentration gradient. After 3 mins, the time necessary to maximal acidification, the electrical charge generated by the entrance of H+ was countered to about 45% by the Cl influx and to about 42% by the Na+ efflux. These studies demonstrated that both Cl and Na+ fluxes are necessary for optimal endocytic vesicle acidification.  相似文献   

16.
Summary In cells of the freshwater algaHydrodictyon africanum, in solutions where [K+]0=0.1mm and pH0>7.0, the membrane in the light is hyperpolarized. The membrane potential difference {ie179-1} has values from –180 to –275 mV, more negative than any ion diffusion potential difference, and is predominantly a function of pH0, and independent of [K+]0. The hyperpolarization of the membrane appears to arise from an electrogenic efflux of H+, estimated from voltage-clamp data to be about 8 nmol m–2 sec–1 when pH0=8.5. In the light the membrane conductanceg m is about 0.084 S m–2. At light-off, {ie179-2} becomes less negative, with a halftime for change of 15 to 30 sec andg m decreases by about 0.052 S m–2. After dark periods of up to 300 sec, {ie179-3} is largely independent of pH0 for values greater than 6.0 and usually behaves as a combined K+ and Na+ diffusion potential with permeability ratioP Na/P K=0.05 to 0.2. The membrane potassium conductanceg K has either a low value of 2–6×10–2 Sm–2, or a high value of up to 18×10–2 S m–2 depending on [K+]0, the transition from low to high values occurring when {ie179-4} moves over a threshold value that is more negative than {ie179-5}, the electrochemical equilibrium potential for K+. The time for half-change of the transition is about 30 sec. The results are consistent with a model of the membrane in which the pump electromotive force and conductance are in parallel with diffusive electromotive forces and conductances. When the pump is operating its properties determine membrane properties, and when it is inoperative, or running at a diminished rate, the membrane properties are determined more by the diffusive pathways. Changes in both pump rate andg K can account for a variety of characteristic changes in membrane PD and conductance occurring in response to ligh-dark changes, changes in light intensity, pasage of externally applied electric current across the membrane and changes in ionic constituents of the external medium.  相似文献   

17.
In the small intestine of the rabbit the process of Na+-dependent uptake of phosphate occurs only at the brush-border of duodenal enterocytes. Li+ can replace Na+. The process is activated when either K+, Cs+, Rb+, or choline is present in the intravesicular space. The presence of membrane-permeable anions is essential for maximum rates of phosphate transport. We conclude that the mechanism of the phosphate carrier is electrogenic at pH 6–8, probably two Na+ moving with each H2PO 4 . This. will lead to the development of a positive charge within the vesicle. The variation of theK m for H2PO 4 with pH is thought to be the consequence of the affinity of the carrier protein for H2PO 4 increasing as the pH increases. Polyclonal antibodies against membrane vesicles isolated from rabbit duodenum, jejunum, and ileum were prepared. The antibodies raised against the ileum and jejunum both activated the phosphate transport process, while the anti-duodenum antibody preparation inhibited phosphate transport.  相似文献   

18.
Summary Prostaglandins are known to stimulate the active transepithelial Na+ uptake and the active secretion of Cl from the glands of isolated frog skin. In the present work the effect of prostaglandin E2 (PGE2) on the glandular Na+ conductance was examined. In order to avoid interference from the Na+ uptake and the glandular Cl secretion the experiments were carried out on skins where the Cl secretion was inhibited (the skins were bathed in Cl Ringer's solution in the presence of furosemide, or in NO 3 Ringer's solution), and the active Na+ uptake was blocked by the addition of amiloride. Transepithelial current, water flow and ion fluxes were measured. A negative current was passed across the skins (the skins were clamped at –100 mV, basolateral solution was taken as reference). When PGE2, was added to the skins under these experimental conditions, the current became more negative; this was mainly due to an increase in the Na+ efflux. Together with the increase in Na+ efflux a significant increase of the water secretion was observed. The water secretion was coupled to the efflux of Na+, and when one Na+ was pulled from the basolateral to the apical solution via this pathway 230 molecules of water follwed. From the data presented it is suggested that this pathway for Na+ is confined to the exocrine glands.  相似文献   

19.
R. J. Haynes 《Plant and Soil》1990,126(2):247-264
The processes responsible for maintenance of cation-anion balance in plants and their relation to active ion accumulation and changes in rhizosphere pH are outlined and discussed. The major processes involved are: (1) accumulation and degradation of organic acids which occur in the plant mainly as organic acid anions (and their transfer within the plant) and (2) extrusion of H+ or OH into the rhizosphere. The relative importance of the two processes is determined by the size of the excess anion or cation uptake. Indeed, plants typically absorb unequal quantities of nutritive cations (NH4 ++Ca2++ Mg2++K++Na+) and anions (NO3 +Cl+SO4 2–+H2PO4 ) and charge balance is maintained by excretion of an amount of H+ or OH which is stoichiometrically equal to the respective excess cation or anion uptake. The mechanisms and processes by which H+ and in particular OH ions are excreted in response to unequal cation-anion uptake are, however, poorly understood.The contemporary view is that primary active extrusion of H+, catalyzed by a membrane-located ATPase, is the major driving force for secondary transport of cations and anions across the plasma membrane. However, the fact that net OH extrusion often occurs (since excess anion absorption commonly takes place) implies there is a yet-to-be characterized OH ion efflux mechanism at the plasma membrane that is associated with anion uptake. There is, therefore, a need for future studies of the uptake mechanisms and stoichiometry of anion uptake; particularly that of NO3 which is often the predominant anion absorbed. Another related phenonenon which requires detailed study in terms of cation-anion balance is localized rhizosphere acidification which can occur in response to deficiencies of Fe and P.  相似文献   

20.
Clostridium botulinum produce the antigenically distinct 150 kD neurotoxin serotypes (e.g., A, B, C1, and E) and simultaneously proteins, A Hn+, B Hn+, C Hn+, and E Hn, that have high, low, and no hemagglutinating activity. A Hn+ and B Hn+ are serologically cross-reactive. A Hn+, B Hn+, and C Hn+ found as large aggregates (900–220 kD) can be dissociated on SDS-PAGE into multiple subunits, the smallest for A Hn+, B Hn+ is 17 kD and 27 kD for C Hn+. The 116 kD E Hn does not aggregate. We determined the sequences of 10–33 amino terminal residues of the 17, 21.5, 35, and 57 kD subunits of A Hn+ and B Hn+. Each of these subunits have unique sequences, indicating that the larger units studied are not homomers or heteromers of smaller units. The subunits of A Hn+ and B Hn+ of comparable size have striking sequence identity (e.g., 21.5 kD subunits from the two are identical and 57 kD subunits have 80% identity).In vitro proteolysis of 116 kD E Hn with different proteases did not impart hemagglutinating activity to the fragments. The 116 kD E Hn and one of its proteolytic fragments (87 kD) were partially sequenced. Sixty-two base pairs downstream from the termination codon of the cloned 33 kD subunit of C Hn+, there is an initiation codon followed by an open reading frame for at least 34 amino acid residues (Tsuzukiet al., 1990). The derived amino acid sequence of this open reading frame, we found, has 73–84% sequence identity with those of the 17 kD subunits of A Hn+ and B Hn+ and significant identity with the N-terminal of E Hn. These highly conserved sequences show existence of genetic linkage among the Hn+ and Hn proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号