首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six environmental fosmid clones from Antarctic coastal water bacterioplankton were completely sequenced. The genome fragments harbored small-subunit rRNA genes that were between 85 and 91% similar to those of their nearest cultivated relatives. The six fragments span four phyla, including the Gemmatimonadetes, Proteobacteria (α and γ), Bacteroidetes, and high-G+C gram-positive bacteria. Gene-finding and annotation analyses identified 244 total open reading frames. Amino acid comparisons of 123 and 113 Antarctic bacterial amino acid sequences to mesophilic homologs from G+C-specific and SwissProt/UniProt databases, respectively, revealed widespread adaptation to the cold. The most significant changes in these Antarctic bacterial protein sequences included a reduction in salt-bridge-forming residues such as arginine, glutamic acid, and aspartic acid, reduced proline contents, and a reduction in stabilizing hydrophobic clusters. Stretches of disordered amino acids were significantly longer in the Antarctic sequences than in the mesophilic sequences. These characteristics were not specific to any one phylum, COG role category, or G+C content and imply that underlying genotypic and biochemical adaptations to the cold are inherent to life in the permanently subzero Antarctic waters.  相似文献   

2.
Asymmetrical patterns of amino acid substitution in proteins of organisms living at moderate and high temperatures (mesophiles and thermophiles, respectively) are generally taken to indicate selection favoring different amino acids at different temperatures due to their biochemical properties. If that were the case, comparisons of different pairs of mesophilic and thermophilic taxa would exhibit similar patterns of substitutional asymmetry. A previous comparison of mesophilic versus thermophilic Methanococcus with mesophilic versus thermophilic Bacillus revealed several pairs of amino acids for which one amino acid was favored in thermophilic Bacillus and the other was favored in thermophilic Methanococcus. Most of this could be explained by the higher G+C content of the DNA of thermophilic Bacillus, a phenomenon not seen in the Methanococcus comparison. Here, I compared the mesophilic bacterium Deinococcus radiodurans and its thermophilic relative Thermus thermophilus, which are similar in G+C content. Of the 190 pairs of amino acids, 83 exhibited significant substitutional asymmetry, consistent with the pervasive effects of selection. Most of these significantly asymmetrical pairs of amino acids were asymmetrical in the direction predicted from the Methanococcus data, consistent with thermal adaptation resulting from universal biochemical properties of the amino acids. However, 12 pairs of amino acids exhibited asymmetry significantly different from and in the opposite direction of that found in the Methanococcus comparison, and 21 pairs of amino acids exhibited asymmetry that was significantly different from that found in the Bacillus comparison and could not be explained by the greater G+C content in thermophilic Bacillus. This suggests that selection due to universal biochemical properties of the amino acids and differences in G+C content are not the only causes of substitutional asymmetry between mesophiles and thermophiles. Instead, selection on taxon-specific properties of amino acids, such as their metabolic cost, may play a role in causing asymmetrical patterns of substitution.  相似文献   

3.
A number of studies have addressed the environmental temperatures experienced by ancient life. Computational studies using a nonhomogeneous evolution model have estimated ancestral G + C contents of ribosomal RNAs and the amino acid compositions of ancestral proteins, generating hypotheses regarding the mesophilic last universal common ancestor. In contrast, our previous study computationally reconstructed ancestral amino acid sequences of nucleoside diphosphate kinases using a homogeneous model and then empirically resurrected the ancestral proteins. The thermal stabilities of these ancestral proteins were equivalent to or greater than those of extant homologous thermophilic proteins, supporting the thermophilic universal ancestor theory. In this study, we reinferred ancestral sequences using a dataset from which hyperthermophilic sequences were excluded. We also reinferred ancestral sequences using a nonhomogeneous evolution model. The newly reconstructed ancestral proteins are still thermally stable, further supporting the hypothesis that the ancient organisms contained thermally stable proteins and therefore that they were thermophilic.  相似文献   

4.
Knowledge about the structural features underlying cold adaptation is important for designing enzymes of different industrial relevance. Vibriolysin from Antarctic bacterium strain 643 (VAB) is at present the only enzyme of the thermolysin family from an organism that thrive in extremely cold climate. In this study comparative sequence-structure analysis and molecular dynamics (MD) simulations were used to reveal the molecular features of cold adaptation of VAB. Amino acid sequence analysis of 44 thermolysin enzymes showed that VAB compared to the other enzymes has: (1) fewer arginines, (2) a lower Arg/(Lys + Arg) ratio, (3) a lower fraction of large aliphatic side chains, expressed by the (Ile + Leu)/(Ile + Leu + Val) ratio, (4) more methionines, (5) more serines, and (6) more of the thermolabile amino acid asparagine. A model of the catalytic domain of VAB was constructed based on homology with pseudolysin. MD simulations for 3 ns of VAB, pseudolysin, and thermolysin supported the assumption that cold-adapted enzymes have a more flexible three-dimensional (3D) structure than their thermophilic and mesophilic counterparts, especially in some loop regions. The structural analysis indicated that VAB has fewer intramolecular cation-pi electron interactions and fewer hydrogen bonds than its mesophilic (pseudolysin) and thermophilic (thermolysin) counterparts. Lysine is the dominating cationic amino acids involved in salt bridges in VAB, while arginine is dominating in thermolysin and pseudolysin. VAB has a greater volume of inaccessible cavities than pseudolysin and thermolysin. The electrostatic potentials on the surface of the catalytic domain were also more negative for VAB than for thermolysin and pseudolysin. Thus, the MD simulations, the structural patterns, and the amino acid composition of VAB relative to other enzymes of the thermolysin family suggest that VAB possesses the biophysical properties generally following adaptation to cold climate.  相似文献   

5.
6.
In order to study the molecular mechanisms of enzyme cold adaptation, direct amino acid sequence, catalytic features, thermal stability and thermodynamics of the reaction and of heat inactivation of L-glutamate dehydrogenase (GDH) from the liver of the Antarctic fish Chaenocephalus aceratus (suborder Notothenioidei, family Channichthyidae) were investigated. The enzyme shows dual coenzyme specificity, is inhibited by GTP and the forward reaction is activated by ADP and ATP. The complete primary structure of C. aceratus GDH has been established; it is the first amino acid sequence of a fish GDH to be described. In comparison with homologous mesophilic enzymes, the amino acid substitutions suggest a less compact molecular structure with a reduced number of salt bridges. Functional characterisation indicates efficient compensation of Q(10), achieved by increased k(cat) and modulation of S(0.5), which produce a catalytic efficiency at low temperature very similar to that of bovine GDH at its physiological temperature. The structural and functional characteristics are indicative of a high extent of protein flexibility. This property seems to find correspondence in the heat inactivation of Antarctic and bovine enzymes, which are inactivated at very similar temperature, but with different thermodynamics.  相似文献   

7.
8.
Summary One hundred twelve human DNA sequences were analyzed with respect to dinucleotide frequency and amino acid composition. The variation in guanine and cytosine (G+C) content revealed: (1) at 2–3 and 3-1 doublet positions CG discrimination is attenuated at high G+C, but TA disfavor is enhanced, and (2) several amino acids are subject to G+C change. These findings have been reported in part for collections of sequences from various species. The present study confirms that in a single organism-the human-the G+C effects do exist. Aspects of the argument that connects G+C with protein thermal stability are also discussed.  相似文献   

9.
《Gene》1996,172(1):117-119
A gene encoding L-lactate dehydrogenase (LDH; EC 1.1.1.27) from Deinococcus radiodurans (Dr) was cloned and sequenced. The deduced amino acid (aa) sequence was compared to those of the Thermus aquaticus (Ta) and T. caldophilus (Tc) LDH. The similarity of the G+C contents between the Dr and Thermus genes permits the comparison of the aa sequences of LDH without considering the difference in the G+C contents. Compared to the mesophilic Dr LDH, increased numbers of hydrophobic aa, together with hydrophilic Arg, were found in the LDH from Ta and Tc, suggesting that these features would contribute to protein thermostability in part via hydrophobic and electrostatic interactions in the protein globule. Deinococcus would be a suitable mesophilic counterpart for Thermus to investigate the thermostability of proteins.  相似文献   

10.
Some properties of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) from two psychrophilic Chloromonas species have been investigated in relation to their adaptation to cold environments. Contrary to the situation usually encountered with psychrophilic enzymes, the carboxylase activity of both purified "cold" RUBISCO enzymes was lower at low temperatures than that found with the enzyme of the mesophilic alga Chlamydomonas reinhardtii Dangeard. Moreover, the apparent optimal temperature for RUBISCO carboxylase activity was similar for psychrophilic and mesophilic enzymes. Psychrophilic RUBISCOs, however, showed a greater thermosensitivity than the C. reinhardtii enzyme. Genes encoding small and large subunits of RUBISCO from one psychrophilic isolate were sequenced. Comparison of the deduced amino acid sequences to those of higher plants and green algae revealed the substitution of a very highly conserved residue (cysteine247 → serine in the large subunit) that could be responsible, at least in part, for the increased thermosensitivity of the "cold" enzyme. Interestingly, the relative amount of RUBISCO subunits found in the psychrophilic isolates was about twice as high as the amount observed in C. reinhardtii and five other mesophilic algae. The high production of a key enzyme to counterbalance its poor catalytic efficiency at low temperature could constitute a novel type of adaptive mechanism to cold environments.  相似文献   

11.
Methods to infer the ancestral conditions of life are commonly based on geological and paleontological analyses. Recently, several studies used genome sequences to gain information about past ecological conditions taking advantage of the property that the G+C and amino acid contents of bacterial and archaeal ribosomal DNA genes and proteins, respectively, are strongly influenced by the environmental temperature. The adaptation to optimal growth temperature (OGT) since the Last Universal Common Ancestor (LUCA) over the universal tree of life was examined, and it was concluded that LUCA was likely to have been a mesophilic organism and that a parallel adaptation to high temperature occurred independently along the two lineages leading to the ancestors of Bacteria on one side and of Archaea and Eukarya on the other side. Here, we focus on Archaea to gain a precise view of the adaptation to OGT over time in this domain. It has been often proposed on the basis of indirect evidence that the last archaeal common ancestor was a hyperthermophilic organism. Moreover, many results showed the influence of environmental temperature on the evolutionary dynamics of archaeal genomes: Thermophilic organisms generally display lower evolutionary rates than mesophiles. However, to our knowledge, no study tried to explain the differences of evolutionary rates for the entire archaeal domain and to investigate the evolution of substitution rates over time. A comprehensive archaeal phylogeny and a non homogeneous model of the molecular evolutionary process allowed us to estimate ancestral base and amino acid compositions and OGTs at each internal node of the archaeal phylogenetic tree. The last archaeal common ancestor is predicted to have been hyperthermophilic and adaptations to cooler environments can be observed for extant mesophilic species. Furthermore, mesophilic species present both long branches and high variation of nucleotide and amino acid compositions since the last archaeal common ancestor. The increase of substitution rates observed in mesophilic lineages along all their branches can be interpreted as an ongoing adaptation to colder temperatures and to new metabolisms. We conclude that environmental temperature is a major factor that governs evolutionary rates in Archaea.  相似文献   

12.
Although carbonic anhydrase is a ubiquitous enzyme involved in a variety of physiological processes, the information on its evolution and cold adaptation among Antarctic fish is still limited: the only Antarctic fish carbonic anhydrase characterized up-to-date is from Chionodraco hamatus, a member of the Channichthyidae family. In this work, we characterized orthologous genes within two other fish families: Nototheniidae (Trematomus eulepidotus, Trematomus lepidorhinus, Trematomus bernacchii) and Bathydraconidae (Cygnodraco mawsoni). The cDNAs of epithelial gill carbonic anhydrases were cloned and sequenced. Both coding and deduced amino acid sequences were used in phylogenetic analyses. The group of enzymes preferentially expressed in fish erythrocytes (CAIIb) represented the most conserved variant. This result suggests that, although the two variants derived from the same ancestor, CAIIc genes have a more complex evolutionary history than CAIIb. The peculiar distribution of Antarctic CAs among fish CAIIcs suggests that the CAIIc gene appeared at different times through independent duplication events, even after the speciation that led to the differentiation of Antarctic fish families. Using the new CA sequences, we built homology models to trace the expected consequences of sequence variability at the protein structure level. From these analyses, we inferred that sequence variability in Antarctic fish CAs affect important physicochemical properties of these proteins and consequentially influence their reactivity. Furthermore, we searched and tested the validity of various potential molecular trademarks for cold adaptation: significant features that can be related to cold adaptation in fish CAs include reduction of positively charged solvent accessible surfaces and an increased flexibility of N-terminal and C-terminal regions.  相似文献   

13.
We show that in animal mitochondria homologous genes that differ in guanine plus cytosine (G + C) content code for proteins differing in amino acid content in a manner that relates to the G + C content of the codons. DNA sequences were analyzed using square plots, a new method that combines graphical visualization and statistical analysis of compositional differences in both DNA and protein. Square plots divide codons into four groups based on first and second position A + T (adenine plus thymine) and G + C content and indicate differences in amino acid content when comparing sequences that differ in G + C content. When sequences are compared using these plots, the amino acid content is shown to correlate with the nucleotide bias of the genes. This amino acid effect is shown in all protein-coding genes in the mitochondrial genome, including cox I, cox II, and cyt b, mitochondrial genes which are commonly used for phylogenetic studies. Furthermore, nucleotide content differences are shown to affect the content of all amino acids with A + T- and G + C-rich codons. We speculate that phylogenetic analysis of genes so affected may tend erroneously to indicate relatedness (or lack thereof) based only on amino acid content. Received: 3 July 1996 / Accepted: 6 November 1996  相似文献   

14.
We report for the first time the isolation of Cellulosimicrobium cellulans from Antarctic snow. This strain demonstrated physiological traits that were markedly different from that of the mesophilic C. cellulans type strain DSM 43879T. The dominant cell wall sugars in C. cellulans were glucose, galactose and mannitol whereas rhamnose was the only major sugar in the type strain. Cellular fatty acid patterns were dominated by 12-methyltetradecanoic acid (ai-C15:0), hexadecanoic acid (C16:0) and 14-methylhexadecanoic acid (ai-C17:0) but lacked iso fatty acids unlike the type strain. The ability of C. cellulans to survive in Antarctic snow could be due to these modified physiological properties that distinguish it from its mesophilic counterpart. Carbon utilization studies demonstrated that C. cellulans preferred complex carbon substrates over simple ones suggesting that it could play a potential role in carbon uptake in snow. Our study shows that this genus could be more cosmopolitan than hitherto thought of and is capable of living in extreme cold environments.  相似文献   

15.
 南极微生物是筛选低温酶的良好来源,但尚未得到充分的研究与开发.低温脂肪酶具有广阔的应用前景,其基因结构特征也具有重要的研究意义. 本文对南极微生物开展了低温脂肪酶产生菌的筛选、基因克隆及特征分析.采用功能筛选的方法,从南极普里兹湾深海沉积物中获得一株产低温脂肪酶的菌株7323,其最适温度和最高生长温度分别为20℃和30℃,属于耐冷菌.16S rDNA序列分析表明,该菌属于假单胞菌属(Pseudomonas).通过设计引物扩增出的脂肪酶基因全长为1854 bp,该基因编码一个由617氨基酸、分子量预计为64466的蛋白质.氨基酸序列分析表明,该酶与Pseudomonas sp. UB48 的脂肪酶有89%的相似性,在催化区和C末端信号肽中存在高度保守的序列.纯化后的酶学性质研究表明,该脂肪酶的最适温度为35℃,最适pH值为9.0,为碱性低温酶.  相似文献   

16.
One hundred and seventy three bacterial strains, isolated previously after enrichment under oligotrophic, psychrophylic conditions from Arctic (98 strains) and Antarctic seawater (75 strains), were characterized by gas-liquid chromatographic analysis of their fatty acid compositions. By numerical analysis, 8 clusters, containing 2 to 59 strains, could be delineated, and 8 strains formed separate branches. Five clusters contained strains from both poles, two minor clusters were confined to Arctic isolates, and one cluster consisted of Antarctic isolates only. The 16S rRNA genes from 23 strains, representing the different fatty acid profile clusters and including the unclustered strains, were sequenced. The sequences grouped with the alpha and gamma Proteobacteria, the high percent G+C gram positives, and the Cytophaga-Flavobacterium-Bacteroides branch. The sequences of strains from 4 clusters and of 7 unclustered strains were closely related (sequence similarities above 97%) to reference sequences of Sulfitobacter mediterraneus, Halomonas variabilis, Alteromonas macleodii, Pseudoalteromonas species, Shewanella frigidimarina, and Rhodococcus fascians. Strains from the other four clusters and an unclustered strain showed sequence similarities below 97% with nearest named neighbours, including Rhizobium, Glaciecola, Pseudomonas, Alteromonas macleodii and Cytophaga marinoflava, indicating that the clusters which they represent form as yet unnamed taxa.  相似文献   

17.
The α-tubulin genes from two psychrophilic algae belonging to the genus Chloromonas (here named ANT1 and ANT3) have been isolated and sequenced. The genes ant1 and ant3 contain 4 and 2 introns, respectively. The coding DNA sequences are 90% identical but the degree of isology is very high at the polypeptide level (more than 97% strict identities). The ANT1 and ANT3 α-tubulin amino acid sequences were compared to the corresponding sequence of the mesophilic alga Chlamydomonas reinhardtii. Of the 15 substitutions detected in ANT1 and/or ANT3, 5 are common to both psychrophilic algae. The recorded substitutions have been analyzed in terms of cold adaptation on the basis of the available three-dimensional structure of the α,β-tubulin heterodimer from pig brain. Most of these are subtle changes, but two substitutions, M268V and A295V occurring in the region of interdimer contacts, could be of great significance for the cold stability of Antarctic algae microtubules due to the fact that the entropic control of microtubule assembly is particularly high in cold adaptes species. Received: December 24, 1998 / Accepted: April 2, 1999  相似文献   

18.
We studied the correlations between amino acid composition and mononucleotide and dinucleotide frequencies in 115 bacterial genomes of varying G+C content. Observed amino acid frequencies were compared with those expected from the actual mononucleotide and dinucleotide frequencies. Both mononucleotide and dinucleotide frequencies correlate well with the amino acid frequency, with dinucleotide frequencies doing so better. Despite the strong correlations, some of the observed amino acid frequencies, in particular for Arg, Val, Asp, Glu, Ser, and Cys, were consistently different from predicted values in all genomes. We suggest that this variation from predicted values is a consequence of selection pressure at the level of amino acids, while the close correspondence to the predictions in residues such as Thr, Phe, Lys, and Asn arises only from mutation and selection pressure at the level of the nucleic acid sequences.  相似文献   

19.
Summary A 1.6-kb fragment of DNA from the thermophilic, methane-producing, anaerobic archaebacteriumMethanobacterium thermoautotrophicum H has been cloned and sequenced. This DNA complements mutations in both the purE1 and purE2 loci ofEscherichia coli. The sequence of theM. thermoautotrophicum DNA predicts that complementation inE. coli results from the synthesis of a polypeptide with a molecular weight of 36,249. A polypeptide apparently of this molecular weight is synthesized inE. coli minicells containing recombinant plasmids that carry the cloned fragment of methanogen DNA. We have previously cloned and sequenced a purE-complementing gene from the mesophilic methanogenMethanobrevibacter smithii. The two methanogen-derived purE-complementing genes are 53% homologous and encode polypeptides that are 45% homologous in their amino acid sequences but would be 74% homologous if conservative amino acid substitutions were considered as maintaining sequence homology. The genome ofM. thermoautotrophicum has a molar G+C content of 49.7%, whereas the genome ofM. smithii is 30.6% G+C. Conservation of encoded amino acids while accommodating the very different G+C contents is accomplished by use of different codons that encode the same amino acid. The majority of base changes occur at the third codon position. The intergenic regions of the clonedM. thermoautotrophicum DNA contain sequences previously identified as ribosome binding sites and as putative methanogen promoters. Although the two purE-complementing genes are apparently derived from a common ancestor, only the gene fromM. smithii maintains a codon usage that conforms to the RNY rule.  相似文献   

20.
An insertion of about 100 bases within the central part of the 23S rRNA genes was found to be a phylogenetic marker for the bacterial line of descent of Gram-positive bacteria with a high DNA G + C content. The insertion was present in 23S rRNA genes of 64 strains representing the major phylogenetic groups of Gram-positive bacteria with a high DNA G+C content, whereas it was not found in 23S rRNA genes of 55 (eu)bacteria representing Gram-positive bacteria with a low DNA G + C content and all other known (eu)bacterial phyla. The presence of the insertion could be easily demonstrated by comparative gel electrophoretic analysis of in vitro-amplified 23S rDNA fragments, which contained the insertion. The nucleotide sequences of the amplified fragments were determined and sequence similarities of at least 44% were found. The overall similarity values are lower than those of 16S and 23S rRNA sequences of the particular organism. Northern hybridization experiments indicated the presence of the insertion within the mature 23S rRNA of Corynebacterium glutamicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号