首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic ribonuclease for mitochondrial RNA processing (RNase MRP) is mainly located in the nucleoli and belongs to the small nucleolar ribonucleoprotein (snoRNP) particles. RNase MRP is involved in the processing of pre-rRNA and the generation of RNA primers for mitochondrial DNA replication. A closely related snoRNP, which shares protein subunits with RNase MRP and contains a structurally related RNA subunit, is the pre-tRNA processing factor RNase P. Up to now, 10 protein subunits of these complexes have been described, designated hPop1, hPop4, hPop5, Rpp14, Rpp20, Rpp21, Rpp25, Rpp30, Rpp38 and Rpp40. To get more insight into the assembly of the human RNase MRP complex we studied protein–protein and protein–RNA interactions by means of GST pull-down experiments. A total of 19 direct protein–protein and six direct protein–RNA interactions were observed. The analysis of mutant RNase MRP RNAs showed that distinct regions are involved in the direct interaction with protein subunits. The results provide insight into the way the protein and RNA subunits assemble into a ribonucleoprotein particle. Based upon these data a new model for the architecture of the human RNase MRP complex was generated.  相似文献   

2.
3.
4.
Ribonuclease H2 (RNase H2) is the major nuclear enzyme involved in the degradation of RNA/DNA hybrids and removal of ribonucleotides misincorporated in genomic DNA. Mutations in each of the three RNase H2 subunits have been implicated in a human auto-inflammatory disorder, Aicardi-Goutières Syndrome (AGS). To understand how mutations impact on RNase H2 function we determined the crystal structure of the human heterotrimer. In doing so, we correct several key regions of the previously reported murine RNase H2 atomic model and provide biochemical validation for our structural model. Our results provide new insights into how the subunits are arranged to form an enzymatically active complex. In particular, we establish that the RNASEH2A C terminus is a eukaryotic adaptation for binding the two accessory subunits, with residues within it required for enzymatic activity. This C-terminal extension interacts with the RNASEH2C C terminus and both are necessary to form a stable, enzymatically active heterotrimer. Disease mutations cluster at this interface between all three subunits, destabilizing the complex and/or impairing enzyme activity. Altogether, we locate 25 out of 29 residues mutated in AGS patients, establishing a firm basis for future investigations into disease pathogenesis and function of the RNase H2 enzyme.  相似文献   

5.
Teufel DP  Kao RY  Acharya KR  Shapiro R 《Biochemistry》2003,42(6):1451-1459
RNase inhibitor (RI) binds diverse proteins in the pancreatic RNase superfamily with extremely high avidity. Previous studies showed that tight binding of RNase A and angiogenin (Ang) is achieved primarily through interactions of hot spot residues in the 434-460 C-terminal segment of RI with the enzymatic active site; Asp435 of RI forms key hydrogen bonds with the catalytic lysine in both complexes, whereas the other contacts are largely distinctive. Here we have investigated the structural basis for recognition of a third ligand, eosinophil-derived neurotoxin (EDN), by single-site and multisite mutagenesis. Surprisingly, Ala replacement of Asp435 decreases affinity for EDN only by 14-fold, as compared to the several hundred-fold decreases with RNase A and Ang, and individual mutations of three other hot spot residues-Tyr434, Tyr437, and Ser460-have essentially no effect. Ala substitutions of nine additional residues, selected by examining a computational model of the RI.EDN complex, also have no marked impact. Overall, the losses in affinity for the single-residue variants examined account for only approximately 25% of the free energy of binding for the complex. However, multisite mutagenesis of RI reveals strong superadditivity of mutational effects, indicating that part of this shortfall reflects negative cooperativity. Replacement of Tyr434 together with Asp435 or Tyr437 increases K(i) by 540- and 290-fold, respectively. Thus, the C-terminal region of RI again plays an important role in ligand recognition, although probably smaller than for binding RNase A and Ang. Simultaneous substitutions of three neighboring tryptophans (261, 263, and 318) on RI attenuate affinity even more dramatically (by 4900-fold), indicating that the interactions of this RI region also contribute a considerable amount of the binding energy for the EDN complex. These findings highlight the potential importance of cooperativity in protein-protein interactions and the consequent limitations of single-site mutagenesis for assessing interface energetics.  相似文献   

6.
RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.  相似文献   

7.
Respiratory chain complex I of the fungus Neurospora crassa contains at least 39 polypeptide subunits, of which 35 are conserved in mammals. The 11.5 kDa and 14 kDa proteins, homologues of bovine IP15 and B16.6, respectively, are conserved among eukaryotes and belong to the membrane domain of the fungal enzyme. The corresponding genes were separately inactivated by repeat-induced point-mutations, and null-mutant strains of the fungus were isolated. The lack of either subunit leads to the accumulation of distinct intermediates of the membrane arm of complex I. In addition, the peripheral arm of the enzyme seems to be formed in mutant nuo14 but, interestingly, not in mutant nuo11.5. These results and the analysis of enzymatic activities of mutant mitochondria indicate that both polypeptides are required for complex I assembly and function.  相似文献   

8.
Mutations in the gene of human RNase T2 are associated with white matter disease of the human brain. Although brain abnormalities (bilateral temporal lobe cysts and multifocal white matter lesions) and clinical symptoms (psychomotor impairments, spasticity and epilepsy) are well characterized, the pathomechanism of RNase T2 deficiency remains unclear. RNase T2 is the only member of the Rh/T2/S family of acidic hydrolases in humans. In recent years, new functions such as tumor suppressing properties of RNase T2 have been reported that are independent of its catalytic activity. We determined the X-ray structure of human RNase T2 at 1.6 Å resolution. The α+β core fold shows high similarity to those of known T2 RNase structures from plants, while, in contrast, the external loop regions show distinct structural differences. The catalytic features of RNase T2 in presence of bivalent cations were analyzed and the structural consequences of known clinical mutations were investigated. Our data provide further insight into the function of human RNase T2 and may prove useful in understanding its mode of action independent of its enzymatic activity.  相似文献   

9.
Eukaryotic ribonuclease (RNase) H2 consists of one catalytic and two accessory subunits. Several single mutations in any one of these subunits of human RNase H2 cause Aicardi-Goutières syndrome. To examine whether these mutations affect the complex stability and activity of RNase H2, three mutant proteins of His-tagged Saccharomyces cerevisiae RNase H2 (Sc-RNase H2*) were constructed. Sc-G42S*, Sc-L52R*, and Sc-K46W* contain single mutations in Sc-Rnh2Ap*, Sc-Rnh2Bp*, and Sc-Rnh2Cp*, respectively. The genes encoding the three subunits were coexpressed in Escherichia coli, and Sc-RNase H2* and its derivatives were purified in a heterotrimeric form. All of these mutant proteins exhibited enzymatic activity. However, only the enzymatic activity of Sc-G42S* was greatly reduced compared to that of the wild-type protein. Gly42 is conserved as Gly10 in Thermococcus kodakareansis RNase HII. To analyze the role of this residue, four mutant proteins, Tk-G10S, Tk-G10A, Tk-G10L, and Tk-G10P, were constructed. All mutant proteins were less stable than the wild-type protein by 2.9-7.6 degrees C in T(m). A comparison of their enzymatic activities, substrate binding affinities, and CD spectra suggests that the introduction of a bulky side chain into this position induces a local conformational change, which is unfavorable for both activity and substrate binding. These results indicate that Gly10 is required to make the protein fully active and stable.  相似文献   

10.
11.
Two ribonucleases H (RNases H) were purified to apparent homogeneity from the yeast Saccharomyces cerevisiae. The enzymes were separated from the previously described yeast ribonuclease H (RNase H(70), Karwan, R., Blutsch, H., and Wintersberger, U. (1983) Biochemistry 22, 5500-5507) by chromatography on Mono Q and blue-Sepharose columns and from each other on a Mono S column. The two proteins, RNase H(55) of molecular weight around 55,000 and RNase H(42) of molecular weight around 42,000, exhibit distinct enzymatic properties: RNase H(55) acts as a 5'-exonuclease of low specific activity and produces predominantly monoribonucleotides from the synthetic hybrid poly(rA)-poly(dT). RNase H(42) efficiently releases oligoribonucleotides from the same substrate. Polyclonal antibodies against these proteins do not cross-react with RNase H(70), and thus, these two RNases H probably do not represent proteolytic breakdown products of RNase H(70). Peptide maps obtained by total digestion of RNase H(55) and RNase H(42) with trypsin reveal several common peptides and, therefore, suggest that the two enzymes are related to each other. We tentatively conclude that RNase H(55) is proteolytically processed to RNase H(42) in vivo.  相似文献   

12.
Nguyen TA  Tak YS  Lee CH  Kang YH  Cho IT  Seo YS 《The FEBS journal》2011,278(24):4927-4942
RNase H2 of Saccharomyces cerevisiae consists of three essential subunits (Rnh201, Rnh202 and Rnh203) and plays a critical role in the removal of RNA incorporated in duplex DNA. In the present study, we purified individual subunits and heterodimeric subcomplexes to examine the assembly and biochemical function of subunits of RNase H2 in vitro. Reconstitution experiments revealed that Rnh202 and Rnh203 first form a subcomplex, followed by the recruitment of Rnh201 to complete complex formation. Rnh201 alone or in combination with Rnh203 showed neither substrate-binding, nor catalytic activity, indicating that both activities of Rnh201 are latent until it becomes an integral part of the complex. However, Rnh202 by itself showed substrate-binding activity. RNase H2 containing mutant Rnh202 defective in substrate binding had decreased substrate-binding activity, indicating that Rnh202 contributes directly to substrate binding. Reconstitution of RNase H2 complexes with various mutant subunits allowed us to assess the influence of conserved amino acid residues in either Rnh201 or Rnh202 on substrate-binding and catalytic activities. We found that the substrate-binding activities of both Rnh201 and Rnh202 were critical for cleavage of the phosphodiester bond present between DNA and RNA in RNase H2 substrates.  相似文献   

13.
The microtubule-based motor molecule cytoplasmic dynein has been proposed to be regulated by a variety of mechanisms, including phosphorylation and specific interaction with the organelle-associated complex, dynactin. In this study, we examined whether the intermediate chain subunits of cytoplasmic dynein are involved in modulation of ATP hydrolysis, and thereby affect motility. Treatment of testis cytoplasmic dynein under hypertonic salt conditions resulted in separation of the intermediate chains from the remainder of the dynein molecule, and led to a 4-fold enhancement of ATP hydrolysis. This result suggests that the accessory subunits act as negative regulators of dynein heavy chain activity. Comparison of ATPase activities of dyneins with differing intermediate chain isoforms showed significant differences in basal ATP hydrolysis rates, with testis dynein 7-fold more active than dynein from brain. Removal of the intermediate chain subunits led to an equalization of ATPase activity between brain and testis dyneins, suggesting that the accessory subunits are responsible for the observed differences in tissue activity. Finally, our preparative procedures have allowed for the identification and purification of a 1:1 complex of dynein with dynactin. As this interaction is presumed to be mediated by the dynein intermediate chain subunits, we now have defined experimental conditions for further exploration of dynein enzymatic and motility regulation.  相似文献   

14.
Protein-RNA interactions in the subunits of human nuclear RNase P.   总被引:5,自引:3,他引:2       下载免费PDF全文
A yeast three-hybrid system was employed to analyze interactions in vivo between H1 RNA, the RNA subunit of human nuclear RNase P, and eight of the protein subunits of the enzyme. The genetic analysis indicates that subunits Rpp21, Rpp29, Rpp30, and Rpp38 interact directly with H1 RNA. The results of direct UV crosslinking studies of the purified RNase P holoenzyme confirm the results of the three-hybrid assay.  相似文献   

15.
The Rad51B, Rad51C, Rad51D and Xrcc2 proteins are Rad51 paralogs, and form a complex (BCDX2 complex) in mammalian cells. Mutant cells defective in any one of the Rad51-paralog genes exhibit spontaneous genomic instability and extreme sensitivity to DNA-damaging agents, due to inefficient recombinational repair. Therefore, the Rad51 paralogs play important roles in the maintenance of genomic integrity through recombinational repair. In the present study, we examined the DNA-binding preference of the human BCDX2 complex. Competitive DNA-binding assays using seven types of DNA substrates, single-stranded DNA (ssDNA), double-stranded DNA, 5′- and 3′-tailed duplexes, nicked duplex DNA, Y-shaped DNA and a synthetic Holliday junction, revealed that the BCDX2 complex preferentially bound to the two DNA substrates with branched structures (the Y-shaped DNA and the synthetic Holliday junction). Furthermore, the BCDX2 complex catalyzed the strand-annealing reaction between a long linear ssDNA (1.2 kb in length) and its complementary circular ssDNA. These properties of the BCDX2 complex may be important for its roles in the maintenance of chromosomal integrity.  相似文献   

16.
17.
《Gene》1996,169(1):137-138
The genes (dms) encoding the dimethylsulfoxide reductase protein complex have been cloned and sequenced from Haemophilus influenzae (Hi) type b (Hib) strain Eagan. The Hib dms genes are arranged as an operon whose genomic organization is similar to that of the Escherichia coli (Ec) dmsABC operon. The deduced Hib DmsA, DmsB and DmsC amino-acid sequences are highly homologous to their Ec counterparts and nearly identical to the recently published sequences of the Hi type-d strain Rd Dms proteins. Hi dimethylsulfoxide reductase appears to be a new member of the superfamily of oxidoreductase enzymes  相似文献   

18.
The Arp2/3 complex is a seven-protein assembly that is critical for actin nucleation and branching in cells. Here we report the reconstitution of active human Arp2/3 complex after expression of all seven subunits in insect cells. Expression of partial complexes revealed that a heterodimer of the p34 and p20 subunits constitutes a critical structural core of the complex, whereas the remaining subunits are peripherally located. Arp3 is crucial for nucleation, consistent with it being a structural component of the nucleation site. p41, p21, and p16 contribute differently to nucleation and stimulation by ActA and WASP, whereas p34/p20 bind actin filaments and likely function in actin branching. This study reveals that the nucleating and organizing functions of Arp2/3 complex subunits are separable, indicating that these activities may be differentially regulated in cells.  相似文献   

19.
To investigate the contribution of the folding cores to the thermodynamic stability of RNases H, we used rational design to create two chimeras composed of parts of a thermophilic and a mesophilic RNase H. Each chimera combines the folding core from one parent protein and the remaining parts of the other. Both chimeras form active, well-folded RNases H. Stability curves, based on CD-monitored chemical denaturations, show that the chimera with the thermophilic core is more stable, has a higher midpoint of thermal denaturation, and a lower change in heat capacity (DeltaCp) upon unfolding than the chimera with the mesophilic core. A possible explanation for the low DeltaCp of both the parent thermophilic RNase H and the chimera with the thermophilic core is the residual structure in the denatured state. On the basis of the studied parameters, the chimera with the thermophilic core resembles a true thermophilic protein. Our results suggest that the folding core plays an essential role in conferring thermodynamic parameters to RNases H.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号