首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC50 0.59 μM) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC50 70 nM) and 84 (IC50 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC50 of 80 μM. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC50 1.7 μM and 0.27 μM, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.  相似文献   

2.
Discovery of GR inhibitors has become very popular recently due to antimalarial and anticancer activities. In this study, the synthesis and GR inhibitory capacities of novel nitroaromatic compounds (NCs) (1-3) were reported. Some commercially available molecules were also tested for comparison reasons. The novel NCs were obtained in high yields using simple chemical procedures and exhibited much potent inhibitory activities against GR at low micromolar concentrations with K(i) values ranging from 0.211 to 4.57 μM as compared with well-known agents. Inhibition mechanism was assessed as being due to occlusion of the active site entrance by means of the NCs. Molecular docking results have shown that docking poses of ligands are able to construct binding interactions with the essential amino acids.  相似文献   

3.
Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co‐substrate, QR2 utilizes a rare group of hydride donors, N‐methyl or N‐ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X‐ray structures of human QR2 (hQR2) in complex with melatonin and 2‐iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC50 values were determined for a representative set of MT3 ligands (MCA‐NAT, 2‐I‐MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X‐ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.  相似文献   

4.
A series of 4-aryl-5-aminoalkyl-thiazole-2-amines were designed and synthesized, and their inhibitory activity on ROCK II was screened by enzyme-linked immunosorbent assay (ELISA). The results showed that 4-aryl-5-aminomethyl-thiazole-2-amines derivatives had certain ROCK II inhibitory activities. Compound 10l showed ROCK II inhibitory activity with IC50 value of 20 nM.  相似文献   

5.
Two new series of diethyl 2-[2-(substituted-2-oxo-1,2-dihydroquinolin-4-yl)hydrazono]-succinates 6a-g and 1-(2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazoles 7a-f have been designed and synthesized. The structures of the synthesized compounds were proved by IR, mass, NMR (2D) spectra and elemental analyses. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI protocol. Consequently, seven compounds were further examined against the most sensitive cell lines, leukemia CCRF-CEM, and MOLT-4. 5-Amino-1-(6-bromo-2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazole-3,4-dicarbonitrile (7f) was the most active product, with IC50 = 1.35 uM and 2.42 uM against MOLT-4 and CCRF-CEM, respectively. Also, it showed a remarkable inhibitory activity compared to erlotinib on the EGFR TK with IC50 = 247.14 nM and 208.42 nM, respectively. Cell cycle analysis of MOLT-4 cells treated with 7f showed cell cycle arrest at G2/M phase (supported by Caspases, BAX and Bcl-2 studies) with a significant pro-apoptotic activity as indicated by annexin V-FITC staining. Moreover, the docking study indicated that both the pyrazole moiety and the quinolin-2-one ring showed good fitting into EGFR (PDB code: 1M17). In order to interpret SAR of the designed compounds, and provide a basis for further optimization, molecular docking of the synthesized compounds to known EGFR inhibitors was performed. The study illustrated the effect of several factors on the compounds’ activity.  相似文献   

6.
Thirteen resveratrol (=5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol) analogues with a CHO group have been prepared by partial synthesis from resveratrol. The synthesized compounds have been evaluated for their cytotoxic activity against a human nasopharyngeal epidermoid tumor cell line KB, as well as for their xanthine oxidase inhibitory activity. Compounds 2, 3, and 6a showed the most significant cytotoxic activities against the cell line KB, and compound 2 also exhibited strong xanthine oxidase inhibitory activity.  相似文献   

7.
In the studied a series novel of lazabemide derivatives were designed, synthesized and evaluated as inhibitors of monoamine oxidase (MAO-A or MAO-B). These compounds used lazabemide as the lead compound, and the chemistry structures were modified by used the bioisostere and modification of compound with alkyl principle. The two types of inhibitors (inhibition of MAO-A and inhibition of MAO-B) were screened by inhibition activity of MAO. In vitro experiments showed that compounds 3a, 3d and 3f had intensity inhibition the biological activity of MAO-A, while compounds 3i and 3m had intensity inhibition the biological activity of MAO-B. It could be seen from the data of inhibition activity experiments in vitro, that the compound 3d was IC50?=?3.12?±?0.05?μmol/mL of MAO-A and compound 3m was IC50?=?5.04?±?0.06?μmol/mL. In vivo inhibition activity experiments were conducted to evaluate the inhibitory activity of compounds 3a, 3d, 3f, 3i and 3m by detecting the contents of 5-HT, NE, DA and activity of MAO-A and MAO-B in plasma and brain tissue. In vivo inhibition activity evaluation results showed that the compounds 3a, 3d, 3f, 3i and 3m had increased the contents of 5-HT, NE and DA in plasma and brain tissues. Meanwhile, the determination results activity of MAO in plasma and brain tissue showed that the compounds 3a, 3d, and 3f had a significant inhibitory effect on the activity of MAO-A, while the compounds 3i and 3m showed inhibitory effect on the activity of MAO-B. This study provided a new inhibitors for inhibiting of MAO activity.  相似文献   

8.
A novel series of aminopyrimidinylisoindoline derivatives 1a-w having an aminopyrimidine scaffold as a hinge region binding motif were designed and synthesized. Among them, six compounds showed potent inhibitory activities against AXL kinase with IC50 values of submicromolar range. Especially, compound 1u possessing (4-acetylpiperazin-1-yl)phenyl moiety exhibited extremely excellent efficacy (IC50?=?<0.00050?μM). Their in vitro antiproliferative activities were tested over five cancer cell lines. Most compounds showed good antiproliferative activities against HeLa cell line. The kinase panel profiling of 50 different kinases and the selected inhibitory activities for the representative compound 1u were carried out. The compound 1u exhibited excellent inhibitory activities (IC50?=?<0.00050, 0.025, and 0.050?μM for AXL, MER, and TYRO3, respectively) against TAM family, together with potent antiproliferative activity against MV4-11 cell line (GI50?=?0.10?μM) related to acute myeloid leukemia (AML).  相似文献   

9.
Resveratrol (trans-3,4',5-trihydroxystilbene) is a grape-derived polyphenol under intensive study for its potential in cancer prevention. In the case of cultured human melanoma cells, no one to our knowledge has investigated whether resveratrol exerts similar anti-proliferative activities in cells with different metastatic potential. Therefore, we examined the effects of this polyphenol on the growth of weakly metastatic Line IV clone 3 and on autologous, highly metastatic Line IV clone 1 cultured melanoma cells. Comparable inhibition of growth and colony formation resulted from treatment by resveratrol in both cell lines. Flow cytometric analysis revealed that resveratrol-treated clone 1 cells had a dose-dependent increase in S phase and a concomitant reduction in the G(1) phase. No detectable change in cell cycle phase distribution was found in similarly treated clone 3 cells. Western blots demonstrated a significant increase in the expression of the tumor suppressor gene p53, without a commensurate change in p21 and several other cell cycle regulatory proteins in both cell types. Chromatography of Line IV clone 3 and clone 1 cell extracts on resveratrol affinity columns revealed that the basal expression of dihydronicotinamide riboside quinone reductase 2 (NQO2) was higher in Line IV clone 1 than clone 3 cells. Levels of NQO2 but not its structural analog NQO1 were dose-dependently increased by resveratrol in both cell lines. We propose that induction of NQO2 may relate to the observed increased expression of p53 that, in turn, contributes to the observed suppression of cell growth in both melanoma cell lines.  相似文献   

10.
Transthyretin (TTR) is a ß-sheet-rich homotetrameric protein that transports thyroxine (T4) and retinol both in plasma and in cerebrospinal fluid. TTR also interacts with amyloid-β, playing a protective role in Alzheimer’s disease. Dissociation of the native transthyretin (TTR) tetramer is widely accepted as the critical step in TTR amyloids fibrillogenesis, and is responsible for extracellular deposition of amyloid fibrils. Small molecules, able to bind in T4 binding sites and stabilize the TTR tetramer, are interesting tools to treat and prevent systemic ATTR amyloidosis. We report here the synthesis, in vitro evaluation and three-dimensional crystallographic analyses of new monoaryl-derivatives in complex with TTR. Of the derivatives reported here, the best inhibitor of TTR fibrillogenesis, 1d, exhibits an activity similar to diflunisal.  相似文献   

11.
A series of thirty two anilinopyrimidines derived from WZ4002 has been synthesized and evaluated for percentage inhibition of six different EGFR kinases using LanthaScreen binding assay method (EGFR d746 – 750) or Z’LYTE assay method (EGFR-WT, EGFR d746 – 750, EGFR T790M, EGFR T790M L858R, EGFR C797S and EGFR T790M L858R C797S). Ortho-hydroxyacetamide 10 exhibited complete inhibition of all the six kinases at 10 µM. Against the triple mutant, EGFR T790M C797S L858R, compounds 912 exhibited complete inhibition at 10 µM and nearly complete inhibition at 1 µM. The target compounds were also evaluated using the MTT assay to determine their cytotoxic activity against human non-small cell lung cancer cells (PC9, PC9GR and H460) and mouse leukemic cells (Ba/F3 WT and Ba/F3T 3151). Overall, 7, 912, 30 and 31 were found to be the most potent compounds across all five cell lines.  相似文献   

12.
Carbon-11-labeled casimiroin analogues were first designed and synthesized as new potential PET agents for imaging of quinone reductase (QR) 2 and aromatase expression in breast cancer. [11C]casimiroin (6-[11C]methoxy-9-methyl-[1,3]dioxolo[4,5-h]quinolin-8(9H)-one, [11C]11) and its carbon-11-labeled analogues 5,6,8-trimethoxy-1-[11C]methyl-4-methylquinolin-2(1H)-one ([11C]17), 8-methoxy-1-[11C]methyl-4-methylquinolin-2(1H)-one ([11C]21a), 6,8-dimethoxy-1-[11C]methyl-4-methylquinolin-2(1H)-one ([11C]21b), and 5,8-dimethoxy-1-[11C]methyl-4-methylquinolin-2(1H)-one ([11C]21c), were prepared from their corresponding precursors with [11C]methyl triflate ([11C]CH3OTf) under basic conditions (NaH) through either O- or N-[11C]methylation and isolated by semi-preparative HPLC method in 40-50% radiochemical yields decay corrected to end of bombardment (EOB), based on [11C]CO2, and 111-185 GBq/μmol specific activity at the end of synthesis (EOS).  相似文献   

13.
14.
JAKs inhibitors were widely applied in the treatment of immunodeficiency diseases, inflammation and cancers. We designed and synthesized a novel series of 4-aminopyrazole derivatives, which showed inhibitory potency against various JAKs. The in vitro protein kinase inhibition experiment indicated that compounds 17k, 17l, 17m and 17n could inhibit JAKs effectively. Among them, compound 17m possessed the highest protein kinase inhibitory rates (%) at 10 μM, which were 97, 96 and 100 to JAK1, JAK2 and JAK3, respectively. Further evaluation revealed that the IC50 values of 17m against JAK1, JAK2 and JAK3 were 0.67 μM, 0.098 μM and 0.039 μM, respectively. Moreover, western blotting results showed compound 17m could inhibit the phosphorylation of JAK2 in Hela cells effectively. The data supports the further investigation of these compounds as novel JAKs inhibitors.  相似文献   

15.
STAT3 signaling pathway has been validated as a vital therapeutic target for cancer therapy. Based on the novel STAT3 inhibitor of a benzyloxyphenyl-methylaminophenol scaffold hit (1) discovered through virtual screening, a series of analogues had been designed and synthesized for more potent inhibitors. The preliminary SAR had been discussed and the unique binding site in SH2 domain was predicted by molecular docking. Among them, compounds 4a and 4b exhibited superior activities than hit compound (1) against IL-6/STAT3 signaling pathway with IC50 values as low as 7.71 μM and 1.38 μM, respectively. Compound 4a also displayed potent antiproliferative activity against MDA-MB-468 cell line with an IC50 value of 9.61 μM. We believe that these benzyloxyphenyl-methylaminophenol derivatives represent a unique mechanism for interrogating STAT3 as well as a potential structure type for further exploration.  相似文献   

16.
In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC50?=?1.61?μM; 21, IC50?=?3.05?μM; and 27, IC50?=?3.34?μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC50) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR?=?8.34, CD?=?2.75?μM), while 7 showed the most potent CD value of 1.12?μM. A dual acting compound 24 showed aromatase inhibition (IC50?=?9.00?μM) as well as QR1 induction (CD?=?5.76?μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3′-nitrogen coordinating with the heme group.  相似文献   

17.
A series of novel 10-substituted 2-hydroxypyrrolobenzodiazepine-5,11-diones designed through structure based rational hybridization approach, synthesized by the cyclodehydration of isotonic anhydride with (2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid followed by N-substitution, were evaluated as angiotensin converting enzyme (ACE) inhibitors. Among all the new compounds screened (2R,11aS)-10-((4-bromothiophen-2-yl)methyl)-2-hydroxy-2,3-dihydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H,11aH)dione, 5v (IC50: 0.272 μM) emerged as most active non-carboxylic acid ACE inhibitor with minimal toxicity comparable to clinical drugs Lisinopril, Benazepril and Ramipril. Favorable binding characteristics in docking studies also supported the experimental results.  相似文献   

18.
CB1954 is a cancer pro-drug that can be activated through reduction by Escherichia coli nitro-reductases and quinone reductases. Human quinone reductase 2 is very efficient in the activation of CB1954, approximately 3000 times more efficient than human QR1 in terms of k(cat)/K(m). We have solved the three-dimensional structure of QR2 in complex with CB1954 to a nominal resolution of 1.5A. The complex structure indicates the essentiality of the two nitro groups: one nitro group forms hydrogen bonds with the side-chain of Asn161 of QR2 to hold the other nitro group in position for the reduction. We further conclude that residue 161, an Asn in QR2 and a His in QR1, is critical in differentiating the substrate specificities of these two enzymes. Mutation of Asn161 to His161 in QR2 resulted in the total loss of the enzymatic activity towards activation of CB1954, whereas the rates of reduction towards menadione are not altered.  相似文献   

19.
Histone lysine-specific demethylase 1 (LSD1) was the first discovered histone demethylase. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development, and thus, it is an attractive molecular target for the development of novel cancer therapeutics. In this study, we worked on the structural optimization of natural products and identified 30 novel LSD1 inhibitors. Utilizing a structure-based drug design strategy, we designed and synthesized a series of curcumin analogues that were shown to be potent LSD1 inhibitors in the enzyme assay. Compound WB07 displayed the most potent LSD1 inhibitory activity, with an IC50 value of 0.8 μM. Moreover, WA20 showed an anticlonogenic effect on A549 cells with an IC50 value of 4.4 μM. Molecular docking simulations were also carried out, and the results indicated that the inhibitors bound to the protein active site located around the key residues of Asp555 and Asp556. These findings suggested that compounds WA20 and WB07 are the first curcumin analogue-based LSD1 inhibitors with remarkable A549 suppressive activity, providing a novel scaffold for the development of LSD1 inhibitors.  相似文献   

20.
Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that dynamically converts 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG), which was upregulated to coordinate glycolysis, pentose phosphate pathway (PPP) and serine biosynthesis to promote cancer cell proliferation and tumor growth in a variety of cancers. However, only a few inhibitors of PGAM1 have been reported with poor molecular or cellular efficacy. In this paper, a series of xanthone derivatives were discovered as novel PGAM1 inhibitors through scaffold hopping and sulfonamide reversal strategy based on the lead compound PGMI-004A. Most xanthone derivatives showed higher potency against PGAM1 than PGMI-004A and exhibited moderate anti-proliferation activity on different cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号