首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seed development in flowering plants is initiated after a double fertilization event with two sperm cells fertilizing two female gametes, the egg cell and the central cell, leading to the formation of embryo and endosperm, respectively. In most species the endosperm is a polyploid tissue inheriting two maternal genomes and one paternal genome. As a consequence of this particular genomic configuration the endosperm is a dosage sensitive tissue, and changes in the ratio of maternal to paternal contributions strongly impact on endosperm development. The FERTILIZATION INDEPENDENT SEED (FIS) Polycomb Repressive Complex 2 (PRC2) is essential for endosperm development; however, the underlying forces that led to the evolution of the FIS-PRC2 remained unknown. Here, we show that the functional requirement of the FIS-PRC2 can be bypassed by increasing the ratio of maternal to paternal genomes in the endosperm, suggesting that the main functional requirement of the FIS-PRC2 is to balance parental genome contributions and to reduce genetic conflict. We furthermore reveal that the AGAMOUS LIKE (AGL) gene AGL62 acts as a dosage-sensitive seed size regulator and that reduced expression of AGL62 might be responsible for reduced size of seeds with increased maternal genome dosage.  相似文献   

3.
4.
The Homeobox Gene GLABRA2 Affects Seed Oil Content in Arabidopsis   总被引:2,自引:0,他引:2  
Despite a good understanding of genes involved in oil biosynthesis in seed, the mechanism(s) that controls oil accumulation is still not known. To identify genes that control oil accumulation in seed, we have developed a simple screening method to isolate Arabidopsis seed oil mutants. The method includes an initial screen for seed density followed by a seed oil screen using an automated Nuclear Magnetic Resonance (NMR). Using this method, we isolated ten low oil mutants and one high oil mutant. The high oil mutant, p777, accumulated 8% more oil in seed than did wild type, but it showed no differences in seed size, plant growth or development. The high-oil phenotype is caused by the disruption of the GLABRA2 gene, a previously identified gene that encodes a homeobox protein required for normal trichome and root hair development. Knockout of GLABRA2 did not affect LEAFY COTYLEDON 1 and PICKLE expression in developing embryo. The result indicates that in addition to its known function in trichome and root hair development, GLABRA2 is involved in the control of seed oil accumulation.  相似文献   

5.
6.
Arabidopsis seed coat development using light and transmission electron microscopy revealed major morphological changes associated with the transition of the integuments into the mature seed coat. By the use of a metachromatic staining procedure, cytological events such as the production of phenolic compounds and acidic polysaccharides were followed. Immediately after fertilization, the cells of the inner epidermis of the inner integument became vacuolated and subsequently accumulated pigment within them. This pigment started to disappear from the cytoplasm at the torpedo stage of the embryo, as it became green. During the torpedo stage, mucilage began to accumulate in the cells of the external epidermis of the outer integument. Furthermore, starch grains accumulated against the central part of the inner periclinal wall of these cells, resulting in the formation of small pyramidal domes that persisted until seed maturity. At the maturation stage, when the embryo became dormant and colourless, a new pigment accumulation was observed in an amorphous layer derived from remnants of crushed integument layers. This second pigment layer was responsible for the brown seed colour. These results show that seed coat formation may proceed in a coordinated way with the developmental phases of embryogenesis. Received 25 May 1999/ Accepted in revised form 10 February 2000  相似文献   

7.
Arabinans are found in the pectic network of many cell walls, where, along with galactan, they are present as side chains of Rhamnogalacturonan I. Whilst arabinans have been reported to be abundant polymers in the cell walls of seeds from a range of plant species, their proposed role as a storage reserve has not been thoroughly investigated. In the cell walls of Arabidopsis seeds, arabinose accounts for approximately 40% of the monosaccharide composition of non- cellulosic polysaccharides of embryos. Arabinose levels decline to -15% during seedling establishment, indicating that cell wall arabinans may be mobilized during germination. Immunolocalization of arabinan in embryos, seeds, and seedlings reveals that arabinans accumulate in developing and mature embryos, but disappear during germination and seedling establishment. Experiments using 14C-arabinose show that it is readily incorporated and metabolized in growing seedlings, indicating an active catabolic pathway for this sugar. We found that depleting arabinans in seeds using a fungal arabinanase causes delayed seedling growth, lending support to the hypothesis that these polymers may help fuel early seedling growth.  相似文献   

8.
肿瘤抑制基因p53和原癌基因c-myc已被证明在动物中高度保守并参与许多PCD过程。这两个基因编码的同源蛋白及其RNA在玉米中的存在已有报道,并且其DNA同源序列已利用荧光原位杂交定位在玉米相应的染色体上。利用免疫组织化学方法探测了与人类p53和c-myc基因同源的玉米基因在玉米颖果发育过程中的时空表达模式。结果发现,在授粉后的一定阶段,在反足细胞、珠被、未成熟的胚乳、予房壁、导管组织和糊粉层中,p53同源基因表达强烈,c-myc同源基因的表达相反,在授粉后的这些组织中基本不表达,而在授粉前的中央细胞的极核中表达水平较高。TUNEL检测显示,在p53同源基因呈现高水平表达的地方,DNA断裂信号强烈。在动物细胞中,p53和c-myc起相反的调节作用,这与其同源基因在玉米中的作用模式相似。由此说明p53和c-myc同源基因可能在玉米颖果发育PCD过程中起重要作用,并进一步推论高等植物PCD和动物细胞凋亡存在一定的保守性机制。  相似文献   

9.
The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.  相似文献   

10.
11.
EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development via repression of flower homeotic genes in Arabidopsis. Removal of EMF gene function caused plants to flower upon germination, producing abnormal and sterile flowers. The pleiotropic effect of ernfl mutation suggests its requirement for gene programs involved in diverse developmental processes. Transgenic plants harboring EMF1 promoter::glucuronidase (GUS) reporter gene were generated to investigate the temporal and spatial expression pattern of EMF1. These plants displayed differential GUS activity in vegetative and flower tissues, consistent with the role of EMF1 in regulating multiple gene programs. EMFI::GUS expression pattern in emf mutants suggests organ-specific auto-regulation. Sense- and antisense (as) EMF1 cDNA were expressed under the control of stage- and tissue-specific promoters in transgenic plants. Characterization of these transgenic plants showed that EMF1 activity is required in meristematic as well as differentiating tissues to rescue emf mutant phenotype. Temporal removal or reduction of EMF1 activity in the embryo or shoot apex of wild-type seedlings was sufficient to cause early flowering and terminal flower formation in adult plants. Such reproductive cell memory is reflected in the flower MADS-box gene activity expressed prior to flowering in these early flowering plants. However, temporal removal of EMF1 activity in flower meristem did not affect flower development. Our results are consistent with EMF1's primary role in repressing flowering in order to allow for vegetative growth.  相似文献   

12.
通过EMS诱变、背景纯化与遗传分析,从拟南芥突变群体中分离到一株单隐性核位点控制的雄性部分不育突变体pms15-16-2-3.细胞学观察表明,突变体在花药发育的过程中,中层细胞延迟降解,绒毡层细胞形态分化异常,出现异常的四分体,导致最终只能形成少量的花粉.利用图位克隆的方法对该基因进行了定位,结果表明PMSl5-16-2.3基因位于拟南芥第3条染色体BAC克隆T24C20 上的28 kb区间内.目前该区间内尚未见到控制小孢子发育基因的报道,因此该基因是一个控制小孢子发育的新基因.本研究结果对同的基因的克隆及其在化粉发育中的功能研究奠定了基础.  相似文献   

13.
Early endosperm development involves a series of rapid nuclear divisions in the absence of cytokinesis; thus, many endosperm mutants reveal genes whose functions are essential for mitosis. This work finds that the endosperm of Arabidopsis thaliana endosperm-defective1 (ede1) mutants never cellularizes, contains a reduced number of enlarged polyploid nuclei, and features an aberrant microtubule cytoskeleton, where the specialized radial microtubule systems and cytokinetic phragmoplasts are absent. Early embryo development is substantially normal, although occasional cytokinesis defects are observed. The EDE1 gene was cloned using a map-based approach and represents the pioneer member of a conserved plant-specific family of genes of previously unknown function. EDE1 is expressed in the endosperm and embryo of developing seeds, and its expression is tightly regulated during cell cycle progression. EDE1 protein accumulates in nuclear caps in premitotic cells, colocalizes along microtubules of the spindle and phragmoplast, and binds microtubules in vitro. We conclude that EDE1 is a novel plant-specific microtubule-associated protein essential for microtubule function during the mitotic and cytokinetic stages that generate the Arabidopsis endosperm and embryo.  相似文献   

14.
通过对3个拟南芥(Arabidopsis thaliana)雄性不育突变体(ms1521,st350,st454)的分析,研究了MS1521基因在花药发育过程中的功能。ms1521是通过EMS诱变野生型拟南芥得到的一株突变体,遗传分析表明ms1521是隐性单核基因控制的。利用图位克隆的方法对不育基因MS1521进行了定位,结果将MS1521定位于拟南芥第一条染色体上26kb的区间内,该定位区间内有一个影响花器官形态建成的基因UFO。测序结果表明在ms1521突变体中UFO基因编码区的958bp处发生了单碱基突变,导致MS1521该位点的氨基酸由天冬酰胺变成了天冬氨酸。另外两个表型与ms1521相似的突变体st350和st454来自T-DNA插入突变体群体。测序结果表明突变体st350和st454分别在UFO基因编码区发生了提前终止突变。等位分析表明它们与MS1521基因是等位的。3个突变体营养生长期发育正常,但生殖生长发育出现异常:有的雄蕊只有花丝没有花药;或者有花药但花丝变短;或者雄蕊有正常的花丝和花药,花药中有可育的花粉,但药室不能开裂;最终导致突变体不育的表型。进一步细胞学观察发现药室不能开裂是由于药室内壁细胞纤维化和木质化增厚不明显造成的。以上这些结果表明MS1521基因在花药发育过程中起重要作用。  相似文献   

15.
Comparative Requirement for Endogenous Ethylene during Seed Germination   总被引:1,自引:1,他引:1  
Requirement for endogenous ethylene during seed germinationof the following ten species was determined: Lycopersicon esculentumMill, (tomato), Allium cepa L. (onion), Avena fatua L., dormantpure line AN-51 (wild oats), Cucumis sativus L. (cucumber),Sinapis arvensis L. (wild mustard), Tagetes erecta L. (marigold),Raphanus sativus L. (radish), Triticum aeslivum L. (wheat),Catharanthus roseus L. (periwinkle), and Phaseolus aureus L(mung bean). Experiments were done under controlled conditionssuited for the germination of each species. Criteria used todetermine the need for endogenous ethylene were: (i) temporalrelationship between ethylene production and seed germination;(ii) parallel inhibition of ethylene synthesis and seed germinationby L-  相似文献   

16.
17.
McConn M  Browse J 《The Plant cell》1996,8(3):403-416
The very high proportions of trienoic fatty acids found in chloroplast membranes of all higher plants suggest that these lipid structures might be essential for photosynthesis. We report here on the production of Arabidopsis triple mutants that contain negligible levels of trienoic fatty acids. Photosynthesis at 22[deg]C was barely affected, and vegetative growth of the mutants was identical with that of the wild type, demonstrating that any requirement for trienoic acyl groups in membrane structure and function is relatively subtle. Although vegetative growth and development were unaffected, the triple mutants are male sterlle and produce no seed under normal conditions. Comparisons of pollen development in wild-type and triple mutant flowers established that pollen grains in the mutant developed to the tricellular stage. Exogenous applications of [alpha]-llnolenate or jasmonate restored fertility. Taken together, the results demonstrate that the critical role of trienoic acids in the life cycle of plants is as the precursor of oxylipin, a signaling compound that regulates final maturation processes and the release of pollen.  相似文献   

18.
19.
Gene targeting in Arabidopsis   总被引:3,自引:0,他引:3  
Precise modification by gene targeting (GT) provides an important tool for studies of gene function in vivo. Although routine with many organisms, only isolated examples of GT events have been reported for flowering plants. These were at low frequencies precluding reliable estimation of targeting efficiency and evaluation of GT mechanisms. Here we present an unambiguous and straightforward system for detection of GT events in Arabidopsis using an endogenous nuclear gene encoding protoporphyrinogen oxidase (PPO), involved in chlorophyll and heme syntheses. Inhibition of PPO by the herbicide Butafenacil results in rapid plant death. However, the combination of two particular mutations renders PPO highly resistant to Butafenacil. We exploited this feature for selection of GT events by introducing the mutations into the PPO gene by homologous recombination. We have estimated the basal GT frequency to be 2.4 x 10(-3). Approximately one-third of events were true GT (TGT) leading to the anticipated modification of the chromosomal PPO copy. The remaining events could be classified as ectopic GT (EGT) arising by modification of vector DNA by the chromosomal template and its random integration into the Arabidopsis genome. Thus the TGT frequency in our experimental setup is 0.72 x 10(-3). In view of the high efficiency of Arabidopsis transformation, GT experiments of a reasonable size followed by a PCR screen for GT events should also allow for modification of non-selectable targets. Moreover, the system presented here should contribute significantly to future improvement of GT technology in plants.  相似文献   

20.
Aminoacyl-tRNA synthetases (AARSs) are required for translation in three different compartments of the plant cell: chloroplasts, mitochondria and the cytosol. Elimination of this basal function should result in lethality early in development. Phenotypes of individual mutants may vary considerably, depending on patterns of gene expression, functional redundancy, allele strength and protein localization. We describe here a reverse genetic screen of 50 insertion mutants disrupted in 21 of the 45 predicted AARSs in Arabidopsis. Our initial goal was to find additional EMB genes with a loss-of-function phenotype in the seed. Several different classes of knockouts were discovered, with defects in both gametogenesis and seed development. Three major trends were observed. Disruption of translation in chloroplasts often results in seed abortion at the transition stage of embryogenesis with minimal effects on gametophytes. Disruption of translation in mitochondria often results in ovule abortion before and immediately after fertilization. This early phenotype was frequently missed in prior screens for embryo-defective mutants. Knockout alleles of non-redundant cytosolic AARSs were in general not identified, consistent with the absolute requirement of cytosolic translation for development of male and female gametophytes. These results provide a framework for evaluating redundant functions of AARSs in Arabidopsis, a valuable data set of phenotypes resulting from multiple disruptions of a single basal process, and insights into which genes are required for both gametogenesis and embryo development and might therefore escape detection in screens for embryo-defective mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号