首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Inhibition of α-glucosidase enzyme activity is a reliable approach towards controlling post-prandial hyperglycemia associated risk factors. During the current study, a series of dihydropyrano[2,3-c] pyrazoles (135) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 1, 4, 22, 30, and 33 were found to be the potent inhibitors of the yeast α-glucosidase enzyme. Mechanistic studies on most potent compounds reveled that 1, 4, and 30 were non-competitive inhibitors (Ki = 9.75 ± 0.07, 46 ± 0.0001, and 69.16 ± 0.01 μM, respectively), compound 22 is a competitive inhibitor (Ki = 190 ± 0.016 μM), while 33 was an uncompetitive inhibitor (Ki = 45 ± 0.0014 μM) of the enzyme. Finally, the cytotoxicity of potent compounds (i.e. compounds 1, 4, 22, 30, and 33) was also evaluated against mouse fibroblast 3T3 cell line assay, and no toxicity was observed. This study identifies non-cytotoxic novel inhibitors of α-glucosidase enzyme for further investigation as anti-diabetic agents.  相似文献   

2.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

3.
A series of aminoparthenolide analogs (637) were synthesized and evaluated for their anti-leukemic activity. Eight compounds exhibited good anti-leukemic activity with LD50’s in the low μM range (1.5–3.0 μM). Compounds 16, 24 and 30 were the most potent compounds in the series, causing greater than 90% cell death at 10 μM concentration against primary AML cells in culture, with LD50 values of 1.7, 1.8 and 1.6 μM.  相似文献   

4.
A series of novel quinolinone–chalcone hybrids and analogues were designed, synthesized and their biological activity against the mammalian stages of Trypanosoma brucei and Leishmania infantum evaluated. Promising molecular scaffolds with significant microbicidal activity and low cytotoxicity were identified. Quinolinone–chalcone 10 exhibited anti-parasitic properties against both organisms, being the most potent anti-L. infantum agent of the entire series (IC50 value of 1.3 ± 0.1 μM). Compounds 4 and 11 showed potency toward the intracellular, amastigote stage of L. infantum (IC50 values of 2.1 ± 0.6 and 3.1 ± 1.05 μM, respectively). Promising trypanocidal compounds include 5 and 10 (IC50 values of 2.6 ± 0.1 and 3.3 ± 0.1 μM, respectively) as well as 6 and 9 (both having IC50 values of <5 μM). Chemical modifications on the quinolinone–chalcone scaffold were performed on selected compounds in order to investigate the influence of these structural features on antiparasitic activity.  相似文献   

5.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

6.
Three new compounds, 3β,6β,23-trihydroxyolean-12-en-28-oic acid 3-O-α-l-arabinopyranoside (1), kalopanaxsaponin L (2), and kalopanaxsaponin M (13), as well as eleven known compounds (312 and 14), were isolated from the stem bark of Kalopanax pictus. Their structures were determined on the basis of extentive spectroscopic analyses and acid hydrolysis. The cytotoxicity of the compounds was evaluated in three human carcinoma cell lines, including HL-60, HCT-116, and MCF-7. Compounds 1, 58, 10, and 11 exhibited significantly cytotoxic activity toward HL-60 cells, with IC50 values ranging from 0.1 to 6.9 μM. Compounds 47 and 14 showed significant cytotoxicity against HCT-116 cells, with IC50 values ranging from 0.4 to 9.2 μM. Remarkably, the cytotoxic activities of compounds 57 against HCT-116 cells were greater than that of the anticancer chemotherapy drug, mitoxantrone (IC50 = 3.7 μM). Compounds 1, 3, 5, and 14 were cytotoxic toward MCF-7 cells with IC50 values in a range of 7.4–14.5 μM.  相似文献   

7.
Oxadiazoles and thiadiazoles 137 were synthesized and evaluated for the first time for their α-glucosidase inhibitory activities. As a result, fifteen of them 1, 4, 5, 7, 8, 13, 17, 23, 25, 30, 32, 33, 35, 36 and 37 were identified as potent inhibitors of the enzyme. Kinetic studies of the most active compounds (oxadiazoles 1, 23 and 25, and thiadiazoles 35 and 37) were carried out to determine their mode of inhibition and dissociation constants Ki. The most potent compound of the oxadiazole series (compound 23) was found to be a non-competitive inhibitor (Ki = 4.36 ± 0.017 μM), while most potent thiadiazole 35 was identified as a competitive inhibitor (Ki = 6.0 ± 0.059 μM). The selectivity and toxicity of these compounds were also studied by evaluating their potential against other enzymes, such as carbonic anhydrase-II and phosphodiesterase-I. Cytotoxicity was evaluated against rat fibroblast 3T3 cell line. Interestingly, these compounds were found to be inactive against other enzymes, exhibiting their selectivity towards α-glucosidase. Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. α-Glucosidase inhibitors can also be used as anti-obesity and anti-viral drugs. Our study identifies two novel series of potent α-glucosidase inhibitors for further investigation.  相似文献   

8.
In this study, we designed and synthesized a series of thiophen-2-iminothiazolidine derivatives from thiophen-2-thioureic with good anti-Trypanosoma cruzi activity. Several of the final compounds displayed remarkable trypanocidal activity. The ability of the new compounds to inhibit the activity of the enzyme cruzain, the major cysteine protease of T. cruzi, was also explored. The compounds 3b, 4b, 8b and 8c were the most active derivatives against amastigote form, with significant IC50 values between 9.7 and 6.03 μM. The 8c derivative showed the highest potency against cruzain (IC50 = 2.4 μM). Molecular docking study showed that this compound can interact with subsites S1 and S2 simultaneously, and the negative values for the theoretical energy binding (Eb = −7.39 kcal·mol−1) indicates interaction (via dipole–dipole) between the hybridized sulfur sp3 atom at the thiazolidine ring and Gly66. Finally, the results suggest that the thiophen-2-iminothiazolidines synthesized are important lead compounds for the continuing battle against Chagas disease.  相似文献   

9.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

10.
Fifteen novel hybrids containing diterpene skeleton and nitric oxide (NO) donor were prepared from isosteviol. All the compounds were tested on preliminary cytotoxicity, and the results showed that six target compounds (8c, 10b, 14a, 14c, 18c, and 18d) exhibited anti-proliferation activity on HepG2 cells, with 8c (IC50 = 4.24 μM) and 18d (IC50 = 2.75 μM) superior to the positive control CDDO-Me (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-acid methyl ester, IC50 = 4.99 μM); eleven target compounds (8ac, 9ac, 10ab, 14a, 14c, 18d) exhibited anti-proliferation activities on B16F10 cells at different levels, among them, seven compounds were more potent than comptothecin (IC50 = 2.78 μM) and CDDO-Me (IC50 = 5.85 μM), particularly, 10b (IC50 = 0.02 μM) presented the strongest effect, which was selected as a candidate for further study.  相似文献   

11.
Two new compounds, euphorbinoside (1) and dehydropicrorhiza acid methyl diester (2), along with 24 known compounds (326) were isolated from Euphorbia humifusa Willd. The effects of these compounds on soluble epoxide hydrolase (sEH) inhibitory activity were evaluated. Flavonoid compounds (1021) exhibited high sEH inhibitory activity. Among them, compounds 12, 13, and 19 greatly inhibited sEH enzymatic activity, with IC50 values as low as 18.05 ± 1.17, 18.64 ± 1.83, and 17.23 ± 0.84 μM, respectively. In addition, the effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compounds 36, 8, 18, 2023, and 2526 inhibited the production of both NO and TNF-α, with IC50 values ranging from 11.1 ± 0.9 to 45.3 ± 1.6 μM and 14.4 ± 0.5 to 44.5 ± 1.2 μM, respectively.  相似文献   

12.
Nine acylated iridoid glycosides (19), five acylated rhamnopyranoses (1014) and verbascoside (15) were isolated from Gmelina arborea flowers, including 5 new compounds (1, 2, and 1012). The cytoprotective activity of 11 selected compounds (18, 10, 11, and 15) against CCl4-induced cytotoxicity on liver was determined. Compounds 1, 2, 4, 7, 8 and 15 displayed hepatoprotective activity. 6-O-α-l-(2″, 3″-di-O-trans-p-hydroxycinnamoyl)rhamnopyranosylcatalpol (2) exhibited the most potent cytoprotective effect with an EC50 value of 42.5 μM (SI = 19.3) compared with biphenyldimethylesterate (DDB, EC50 = 277.3 μM, SI = 9.8) and bicylo-ethanol (EC50 = 279.2 μM, SI = 12.2). Among the acylated iridoid glycosides, the compounds (2 and 8) containing phenolic hydroxy groups were more active than were those lacking them.  相似文献   

13.
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4am) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3am) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24 h = 15 ± 0.14 μM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24 h = 26 ± 0.09 μM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50 = 13 ± 0.04 μM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.  相似文献   

14.
Novel riminophenazine derivatives, characterized by the presence of the basic and cumbersome quinolizidinylalkyl and pyrrolizidinylethyl moieties, have been synthesized and tested (Rema test) against Mycobacterium tuberculosis H37Rv and H37Ra, and six clinical isolates of Mycobacterium avium and Mycobacterium tuberculosis. Most compounds exhibited potent activity against the tested strains, resulting more active than clofazimine, isoniazid and ethambutol.The best compounds (4, 5, 12 and 13) exhibited a MIC in the range 0.82–0.86 μM against all strains of Mycobacterium tuberculosis and, with the exception of 4 a MIC around 3.3 μM versus M. avium. The corresponding values for clofazimine (CFM) were 1.06 and 4.23 μM, respectively. Cytotoxicity was evaluated against three cell lines and compound 4 displayed a selectivity index (SI) versus the human cell line MT-4 comparable with that of CFM (SI = 5.23 vs 6.4). Toxicity against mammalian Vero 76 cell line was quite lower with SI = 79.  相似文献   

15.
To discover multifunctional agents for the treatment of Alzheimer’s disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12 ± 0.01, 8.12 ± 0.01 and 8.41 ± 0.06 μM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50 = 0.85 ± 0.0001 μM). Three compounds 13, 24 and 3 having IC50 values 6.51 ± 0.01, 9.22 ± 0.07 and 37.82 ± 0.14 μM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50 = 0.04 ± 0.0001 μM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed.  相似文献   

16.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

17.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

18.
Thymidine phosphorylase (TP) is up regulated in wide variety of solid tumors and therefore presents a remarkable target for drug discovery in cancer. A novel class of extremely potent TPase inhibitors based on benzopyrazine (1–28) has been developed and evaluated against thymidine phosphorylase enzyme. Out of these twenty-eight analogs eleven (11) compounds 1, 4, 14, 15, 16, 17, 18, 19, 20, 24 and 28 showed potent thymidine phosphorylase inhibitory potentials with IC50 values ranged between 3.20 ± 0.30 and 37.60 ± 1.15 μM when compared with the standard 7-Deazaxanthine (IC50 = 38.68 ± 4.42 μM). Structure-activity relationship was established and molecular docking studies were performed to determine the binding interactions of these newly synthesized compounds. Current studies have revealed that these compounds established stronger hydrogen bonding networks with active site residues as compare to the standard compound 7DX.  相似文献   

19.
The diterpenoids (+)-ferruginol (1), ent-kaur-16-en-15-one (2), ent-8(14),15-sandaracopimaradiene-2α,18-diol (3), 8(14),15-sandaracopimaradiene-2α,18,19-triol (4), and (+)-sugiol (5) and the triterpenoids 3β-methoxycycloartan-24(241)-ene (6), 3β,23β-dimethoxycycloartan-24(241)-ene (7), 3β,23β-dimethoxy-5α-lanosta-24(241)-ene (8), and 23(S)-23-methoxy-24-methylenelanosta-8-en-3-one (9), isolated from Amentotaxus formosana, showed inhibitory effects on xanthine oxidase (XO). Of the compounds tested, compound 5 was a potent inhibitor of XO activity, with an IC50 value of 6.8 ± 0.4 μM, while displaying weak ABTS radical cation scavenging activity. Treatment of the bladder cancer cell line, NTUB1, with 3–10 μM of compound 5 and 10 μM cisplatin, and immortalized normal human urothelial cell line, SV-HUC1, with 0.3–1 μM and 10–50 μM of compound 5 and 10 μM cisplatin, respectively, resulted in increased viability of cells compared with cytotoxicity induced by cisplatin. Treatment of NTUB1 with 20 μM cisplatin and 10 or 30 μM of compound 5 resulted in decreased ROS production compared with ROS production induced by cisplatin. These results indicate that 10 or 30 μM of compound 5 in NTUB1 cells may mediate through the suppression of XO activity and reduction of reactive oxygen species (ROS) induced by compound 5 cotreated with 20 μM cisplatin and protection of subsequent cell death.  相似文献   

20.
2-Arylquinazolin-4(3H)-ones 125 were synthesized by reacting anthranilamide with various benzaldehydes using CuCl2·2H2O as a catalyst in ethanol under reflux. Synthetic 2-arylquinazolin-4(3H)-ones 125 were evaluated for their β-glucuronidase inhibitory potential. A trend of inhibition IC50 against the enzyme in the range of 0.6–198.2 μM, was observed and compared with the standard d-saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 μM). Compounds 13, 19, 4, 12, 14, 22, 23, 25, 15, 8, 17, 11, 21, 1, 3, 18, 9, 2, and 24 with the IC50 values within the range of 0.6–44.0 μM, indicated that the compounds have superior activity than the standard. The compounds showed no cytotoxic effects against PC-3 cells. A structure–activity relationship is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号