首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-[(p-Carborane-2-yl)ethynyl]-2′-deoxyuridine 5′-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases.  相似文献   

2.
The synthesis of oligonucleotides containing 1-(2-deoxy-β-D-ribofuranosyl)-2-methyl-4-nitroindole and 1-(2-deoxy-β-D-ribofuranosyl)-2-phenyl-4-nitroindole is described. The synthesized modified oligonucleotides were used for studying the stability of intermolecular DNA duplexes with one unnatural strand and for evaluation of discriminating potential of 2-methyl-and 2-phenyl-4-nitroindoles toward nucleic bases. For comparison, an unmodified oligonucleotide and oligonucleotides bearing 5-nitroindole were used. It was shown that 2-methyl-4-nitroindole was only insignificantly inferior in stability to 5-nitroindole and characterized by a similar discriminating potential. 2-Phenyl-4-nitroindole provided a more pronounced duplex destabilization, the discrimination toward natural bases being decreased.  相似文献   

3.
Oligonucleotides containing 7-(omega-aminoalkyn-1-yl)-7-deaza-2'-deoxyguanosines (1a-c) were investigated regarding their thermal stability (T(m) values) as well as their phosphodiester hydrolysis catalyzed by exonucleases. Those derivatives are suitable for the labeling of nucleic acid constituents as well as for the postlabeling of DNA. For this, the phosphoramidites 7a,c (obtained from the nucleoside 1a,b), protected by an isobutyryl group at the 2-amino group and a phthaloyl residue at the side-chain amino function, were synthesized. Using compounds 7a,c together with the phosphoramidite of 1c in solid-phase synthesis, a series of self-complementary and non-self-complementary oligonucleotides were prepared and characterized by MALDI-TOF mass spectrometry. A comparison of the T(m) values of the modified oligomers shows that the thermal stability of the duplexes decreases with the length of the nucleobase 7-(omega-aminoalkyn-1-yl) side chain. Exonucleolytic cleavage of oligonucleotide single strands incorporating either the 7-(3-aminopropyn-1-yl)- or the 7-(4-aminobutyn-1-yl)-substituted nucleosides 1a or 1b, respectively, reveals that 3' --> 5' specific snake venom phosphodiesterase liberates 1a 5'-monophosphate but not the methylene-extended 1b 5'-monophosphate. On the contrary, the 5' --> 3' specific bovine spleen exonuclease is able to cleave off single 1a and 1b 3'-monophosphate residues; its action is, however, terminated in the case of oligonucleotides containing two consecutive 1a or 1b nucleotide units.  相似文献   

4.
An antisense oligonucleotide is expected as an innovative drug for cancer and hereditary diseases. In this paper, we designed and synthesized DNAs containing a novel nucleoside analog, 1-(4-C-aminomethyl-2-deoxy-2-fluoro-β-d-arabinofuranosyl)thymine, and evaluated their properties. It was revealed that the analog slightly decreases the thermal stability of the DNA/RNA duplex but significantly increases the stability of DNA in a buffer containing bovine serum. Furthermore, it turned out that the DNA/RNA duplex containing the analog is a good substrate for Escherichia coli RNase H. Thus, DNAs containing the nucleoside analog would be good candidates for the development of therapeutic antisense oligonucleotides.  相似文献   

5.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

6.
The synthesis of oligonucleotides containing 2′-deoxy-2′-fluoro-4′-thioarabinonucleotides is described. 2′-Deoxy-2′-fluoro-5-methyl-4′-thioarabinouridine (4′S-FMAU) was incorporated into 18-mer antisense oligonucleotides (AONs). 4′S-FMAU adopts a predominantly northern sugar conformation. Oligonucleotides containing 4′S-FMAU, unlike those containing FMAU, were unable to elicit E. coli or human RNase H activity, thus corroborating the hypothesis that RNase H prefers duplexes containing oligonucleotides that can adopt eastern conformations in the antisense strand. The duplex structure and stability of these oligonucleotides was also investigated via circular dichroism (CD)- and UV- binding studies. Replacement of the 4′-oxygen by a sulfur atom resulted in a marked decrease in melting temperature of AON:RNA as well as AON:DNA duplexes. 2′-Deoxy-2′-fluoro-4′-thioarabinouridine (4′S-FAU) was incorporated into 21-mer small interfering RNA (siRNA) and the resulting siRNA molecules were able to trigger RNA interference with good efficiency. Positional effects were explored, and synergy with 2′F-ANA, which has been previously established as a functional siRNA modification, was demonstrated.  相似文献   

7.
When inserting 2-phenyl or 2-naphth-1-yl-phenanthroimidazole intercalators (X and Y, respectively) as bulges into triplex-forming oligonucleotides, both intercalators show extraordinary high thermal stability of the corresponding Hoogsteen-type triplexes and Hoogsteen-type parallel duplexes with high discrimination to Hoogsteen mismatches. Molecular modeling shows that the phenyl or the naphthyl ring stacks with the nucleobases in the TFO, while the phenanthroimidazol moiety stacks with the base pairs of the dsDNA. DNA-strands containing the intercalator X show higher thermal triplex stability than DNA-strands containing the intercalator Y. The difference can be explained by a lower degree of planarity of the intercalator in the case of naphthyl. It was also observed that triplex stability was considerably reduced when the intercalators X or Y was replaced by 2-(naphthlen-1-yl)imidazole. This confirms intercalation as the important factor for triplex stabilization and it rules out an alternative complexation of protonated imidazole with two phosphate groups. The intercalating nucleic acid monomers X and Y were obtained via a condensation reaction of 9,10-phenanthrenequinone (4) with (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)benzaldehyde (3a) or (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)-1-naphthaldehyde (3b), respectively, in the presence of acetic acid and ammonium acetate. The required monomers for DNA synthesis using amidite chemistry were obtained by standard deprotection of the hydroxy groups followed by 4,4'-dimethoxytritylation and phosphitylation.  相似文献   

8.
5-Formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. The elucidation of repair mechanisms for 5-foU will yield important insights into the biological consequences of the lesion. Recently, we reported that 5-foU is recognized and removed from DNA by Escherichia coli enzymes Nth (endonuclease III), Nei (endonuclease VIII) and MutM (formamidopyrimidine DNA glycosylase). Human cells have been shown to have enzymatic activities that release 5-foU from X-ray-irradiated DNA, but the molecular identities of these activities are not yet known. In this study, we demonstrate that human hNTH1 (endonuclease III homolog) has a DNA glycosylase/AP lyase activity that recognizes 5-foU in DNA and removes it. hNTH1 cleaved 5-foU-containing duplex oligonucleotides via a β-elimination reaction. It formed Schiff base intermediates with 5-foU-containing oligonucleotides. Furthermore, hNTH1 cleaved duplex oligonucleotides containing all of the 5-foU/N pairs (N = G, A, T or C). The specific activities of hNTH1 for cleavage of oligonucleotides containing 5-foU and thymine glycol were 0.011 and 0.045 nM/min/ng protein, respectively. These results indicate that hNTH1 has DNA glycosylase activity with the potential to recognize 5-foU in DNA and remove it in human cells.  相似文献   

9.
The efficiency of enzymatic conversion of DNA complexes containing non-nucleotide inserts has been studied. T4 DNA ligase and Taq DNA polymerase have been included in the study as examples of widely used DNA-dependent enzymes. A series of substrate DNA complexes have been formed using native oligonucleotides and bridged ones bearing non-nucleotide inserts based on phosphodiesters of di-, tetra-, or hexaethylene glycol, 1,5-pentanediol, 1,10-decanediol, and 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran. The perturbation in DNA located far from the site of the enzyme action had almost no influence on the substrate properties of the complex, while insertion near this site significantly deteriorated them. The use of a series of modified duplexes allows one to locate the position of the enzyme-binding site on DNA substrate with the accuracy of 1–2 nucleotides. The presence of a non-nucleotide insert in the complex has been also shown to enhance the efficiency of single mismatch discrimination upon both template-directed ligation and extension of oligonucleotides.  相似文献   

10.
We synthesized several DNA oligonucleotides containing one or several 2′-O-methyl-8-methyl guanosine (m8Gm) and demonstrated that these oligonucleotides not only stabilize the Z-DNA with a wide range of sequences under low salt conditions but also possess high thermal stability. Using artificial nucleobase-containing oligonucleotides, we studied the interaction of the Zα domain with Z-DNA. Furthermore, we showed that the m8Gm-contained oligonucleotides allow to study the photochemical reaction of Z-DNA.  相似文献   

11.
We report here the solid phase synthesis of RNA and DNA oligonucleotides containing the 2′-selenium functionality for X-ray crystallography using multiwavelength anomalous dispersion. We have synthesized the novel 2′-methylseleno cytidine phosphoramidite and improved the accessibility of the 2′-methylseleno uridine phosphoramidite for the synthesis of many selenium-derivatized DNAs and RNAs in large scales. The yields of coupling these Se-nucleoside phosphoramidites into DNA or RNA oligonucleotides were over 99% when 5-(benzylmercapto)-1H-tetrazole was used as the coupling reagent. The UV melting study of A-form dsDNAs indicated that the 2′-selenium derivatization had no effect on the stability of the duplexes with the 3′-endo sugar pucker. Thus, the stems of functional RNA molecules with the same 3′-endo sugar pucker appear to be the ideal sites for the selenium derivatization with 2′-Se-C and 2′-Se-U. Crystallization of the selenium-derivatized oligonucleotides is also reported here. The results demonstrate that this 2′-selenium functionality is suitable for RNA and A-form DNA derivatization in X-ray crystallography.  相似文献   

12.
A new type of coating for manufacturing DNA chips was constructed on the basis of an organicinorganic nanocomposite based on the polyvinylbutyral-tetraethoxysilane copolymer. The organosilicon composite was functionalized by introduction of ethanolamine vinyl ether copolymers, which contain amino groups and anchor vinyloxide units capable of reacting with silanol groups of the nanocomposite. The resulting coatings form a film on glass slides with a high surface density of amino groups (up to 700 groups/nm2) suitable for three-dimensional immobilization of oligonucleotides. The use of bifunctional reagents (e.g., phenylene diisothiocyanate) for the attachment of oligonucleotides bearing amino linkers to the amino-containing surface provides an immobilization density of 0.5–1.6 pmol/mm2. Immobilization with a higher density (10–12 pmol/mm2) was achieved for attachment to amino-containing glass slides upon the use of oligonucleotides containing a selectively activated terminal phosphate group. The activation of oligonucleotides was carried out with the triphenylphosphine-dithiodipyridine pair in the presence of dimethylaminopyridine N-oxide. The resulting DNA chips were shown to be useful in principle for DNA detection.  相似文献   

13.
The synthesis of oligonucleotides containing 1-(2-deoxy-beta-D-ribofuranosyl)-2-methyl-4-nitroindole and 1-(2-deoxy-beta-D-ribofuranosyl)-2-phenyl-4-nitroindole is described. The synthesized modified oligonucleotides were used for studying the stability of intermolecular DNA duplexes with one unnatural strand and for evaluation of discriminating potential of 2-methyl- and 2-phenyl-4-nitroindoles toward nucleic bases. For comparison, an unmodified oligonucleotide and oligonucleotides bearing 5-nitroindole were used. It was shown that 2-methyl-4-nitroindole was only insignificantly inferior in stability to 5-nitroindole and characterized by a similar discriminating potential. 2-Phenyl-4-nitroindole provided a more pronounced duplex destabilization, the discrimination toward natural bases being decreased. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http:// www.maik.ru.  相似文献   

14.
Self-complementary [[5'-d(G-C)4]2] and non-selfcomplementary oligonucleotides [5'-d(TAG GTC AAT ACT) x 3'-d(ATC CAG TTA TGA)] containing 7-(omega-aminoalkyn-1-yl)-7-deaza-2'-deoxyguanosines (1a-c) (1) and 7-deaza-2'-deoxyguanosine instead of dG were studied regarding their thermal stability as well as their phosphodiester hydrolysis by either 3' --> 5'- or 5' --> 3'-phosphodiesterase studied by MALDI-TOF MS.  相似文献   

15.
Endonuclease III (Endo III) is a base excision repair enzyme that recognizes oxidized pyrimidine bases including thymine glycol. This enzyme is a glycosylase/lyase and forms a Schiff base-type intermediate with the substrate after the damaged base is removed. To investigate the mechanism of its substrate recognition by X-ray crystallography, we have synthesized oligonucleotides containing 2′-fluorothymidine glycol, expecting that the electron-withdrawing fluorine atom at the 2′ position would stabilize the covalent intermediate, as observed for T4 endonuclease V (Endo V) in our previous study. Oxidation of 5′- and 3′-protected 2′-fluorothymidine with OsO4 produced two isomers of thymine glycol. Their configurations were determined by NMR spectroscopy after protection of the hydroxyl functions. The ratio of (5R,6S) and (5S,6R) isomers was 3:1, whereas this ratio was 6:1 in the case of the unmodified sugar. Both of the thymidine glycol isomers were converted to the corresponding phosphoramidite building blocks and were incorporated into oligonucleotides. When the duplexes containing 2′-fluorinated 5R- or 5S-thymidine glycol were treated with Escherichia coli endo III, no stabilized covalent intermediate was observed regardless of the stereochemistry at C5. The 5S isomer was found to form an enzyme–DNA complex, but the incision was inhibited probably by the fluorine-induced stabilization of the glycosidic bond.  相似文献   

16.
17.
We have investigated the ATPase activity of the type IC restriction-modification (R – M) systemEcoR124II. As with all type I R – M systemsEcoR 124II requires ATP hydrolysis to cut DNA. We determined theKMfor ATP to be 10−5to 10−4M. By measuring ATP hydrolysis under different conditions and by simultaneously monitoring DNA restriction, methylation and ATP hydrolysis we propose that the order of events during restriction is: (1) binding ofEcoR124II to a non-methylated recognition sequence, (2) start of DNA-dependent ATP hydrolysis which continues even after restriction is complete, (3) restriction of DNA, (4) methylation of the product. Non-cleavable DNA substrates, such as recognition site containing oligonucleotides, also support ATP hydrolysis. Methylation can also occur prior to ATP hydrolysis and prevent DNA degradation.  相似文献   

18.
Aromatic amino and nitro compounds are potent carcinogens found in the environment that exert their toxic effects by reacting with DNA following metabolic activation. One important adduct is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF), which has been extensively used in studies of the mechanisms of DNA repair and mutagenesis. Despite the importance of dG-AAF adducts in DNA, an efficient method for its incorporation into DNA using solid-phase synthesis is still missing. We report the development of a modified ‘ultra-mild’ DNA synthesis protocol that allows the incorporation of dG-AAF into oligonucleotides of any length accessible by solid-phase DNA synthesis with high efficiency and independent of sequence context. Key to this endeavor was the development of improved deprotection conditions (10% diisopropylamine in methanol supplemented with 0.25 M of β-mercaptoethanol) designed to remove protecting groups of commercially available ‘ultra-mild’ phosphoramidite building blocks without compromising the integrity of the exquisitely base-labile acetyl group at N8 of dG-AAF. We demonstrate the suitability of these oligonucleotides in the nucleotide excision repair reaction. Our synthetic approach should facilitate comprehensive studies of the mechanisms of repair and mutagenesis induced by dG-AAF adducts in DNA and should be of general use for the incorporation of base-labile functionalities into DNA.  相似文献   

19.
A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9–34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.  相似文献   

20.
Chalcones with or without a para-hydroxyl group were condensed with phenylhydrazine-related compounds to form 1,3,5-triphenyl-1H-pyrazole (TPP), 4-(1,5-diphenyl-1H-pyrazol-3-yl)phenol (APP), 4-(1,3-diphenyl-1H-pyrazol-5-yl)phenol (BPP), and 4-(3,5-diphenyl-1H-pyrazol-1-yl)phenol (CPP), in which the phenyl group formed a dendritic structure with pyrazole as the core. Thus, the aim of this work was to explore the antioxidant capacities of TPP, APP, BPP, and CPP in trapping 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+?) and 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) and in inhibiting Cu2 +/glutathione (GSH)-, ?OH-, and 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation of DNA. TPP can react with ABTS+? and DPPH, indicating that the N atom in pyrazole possesses radical-scavenging ability. Moreover, APP, BPP, and CPP can trap 1.71, 1.81, and 1.58 radicals, respectively, in protecting DNA against AAPH-induced oxidation. Thus, the combination of pyrazole with a phenyl group exerted antioxidant ability although only one phenolic hydroxyl group was involved. However, these compounds showed weak protective effect against Cu2 +/GSH-induced oxidation of DNA and even a pro-oxidant effect on ?OH-induced oxidation of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号