首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein polymers (long-chain proteins in which a specific amino acid sequence "monomer" is repeated through the molecule) are found widely in nature, and these materials exhibit a diverse array of physical properties. One class of self-assembling proteins is hydrophobic-polar (HP) protein polymers capable of self-assembly under the appropriate solution conditions. We generated a chimeric protein consisting of an HP protein polymer monomer unit, EAK 1 (sequence n-AEAEAKAKAEAEAKAK-c), and a silaffin peptide, R5 (sequence: n-SSKKSGSYSGSKGSKRRIL-c). First identified in diatoms, silaffins represent a class of proteins and peptides capable of directing silica precipitation in vitro at neutral pH and ambient temperatures. The EAK 1-R5 chimera demonstrated self-assembly into hydrogels and the ability to direct silica precipitation in vitro. This chimera is capable of generating silica morphologies and feature sizes significantly different from those achievable with the R5 peptide alone, indicating that fusions of silaffins with self-assembling proteins may be a route to controlling the morphology of artificially produced silica matrices.  相似文献   

2.
In the diatom Cylindrotheca fusiformis, modified peptides called silaffin polypeptides are responsible for silica deposition in vivo at ambient conditions. Recently, it was discovered that the synthetic R5 peptide, the repeat unit of silaffin polypeptide without post‐translational modification, was capable of precipitating silica in vitro and at ambient conditions. Herein, chimeric proteins were generated by incorporating synthetic silaffin R5 peptides and related unmodified silaffin domains (R1–R7) from Cylindrotheca fusiformis onto green fluorescent protein (GFP) by recombinant DNA technology and their ability to cause silicification was also examined. GFP chimeric proteins showed silicification at very low concentrations (600–700 μg/mL) when compared with adding excess amounts of R5 peptides (10 mg/mL) as previously reported. Sensitive to pH conditions, only the GFP‐R1 chimera showed silicification activity at pH 8.0. The protein immobilization efficiencies of these chimeras were unexpectedly high ranging from 75 to 85%, with the R1 silaffin‐protein construct showing excellent immobilization efficiency and a constant molar ratio of silica to protein ranging from 250 to 350 over a wide pH range. The average silica particle sizes had a tendency to decrease as pH increased to basic conditions. This study demonstrated the production of nanoscale immobilized protein, fabricated via silaffin‐fused proteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
Enzymes and other biomolecules are often immobilized in a matrix to improve their stability or to improve their ability to be reused. Performing a polycondensation reaction in the presence of a biomolecule of interest relies on random entrapment events during polymerization and may not ensure efficient, homogeneous, or complete biomolecule encapsulation. To overcome these limitations, we have developed a method of incorporating autosilification activity into proteins without affecting enzymatic functionality. The unmodified R5 silaffin peptide from Cylindrotheca fusiformis is capable of initiating silica polycondensation in vitro at ambient temperatures and pressures in aqueous solution. In this study, translational fusion proteins between R5 and various functional proteins (phosphodiesterase, organophosphate hydrolase, and green fluorescent protein) were produced in Escherichia coli. Each of the fusion proteins initiated silica polycondensation, and enzymatic activity (or fluorescence) was retained in the resulting silica spheres. Under certain circumstances, the enzymatically‐active biosilica displayed improved stability relative to free enzyme at elevated temperatures. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12–14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism.  相似文献   

5.
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1–110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.  相似文献   

6.
We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1 M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm−1 by adding 1 mM glucose at an applied potential of −0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67 mM (S/N = 3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor.  相似文献   

7.
The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis.  相似文献   

8.
Defined and tunable peptide-lipid membrane interactions that trigger the release of liposome encapsulated drugs may offer a route to improving the efficiency and specificity of liposome-based drug delivery systems, but this require means to tailor the performance of the membrane active peptides. In this paper, the membrane activity of a de novo designed coiled coil peptide has been optimized with respect to sequence and size to improve release efficiency of liposome encapsulated cargo. The peptides were only membrane active when covalently conjugated to the liposomes. Two amino acid substitutions were made to enhance the amphipathic characteristics of the peptide, which increased the release by a factor of five at 1?μM. Moreover, the effect of peptide length was investigated by varying the number of heptad repeats from 2 to 5, yielding the peptides KVC2-KVC5. The shortest peptide (KVC2) showed the least interaction with the membrane and proved less efficient than the longer peptides in releasing the liposomal cargo. The peptide with three heptads (KVC3) caused liposome aggregation whereas KVC4 proved to effectively release the liposomal cargo without causing aggregation. The longest peptide (KVC5) demonstrated the most defined α-helical secondary structure and the highest liposome surface concentration but showed slower release kinetics than KVC4. The four heptad peptide KVC4 consequently displayed optimal properties for triggering the release and is an interesting candidate for further development of bioresponsive and tunable liposomal drug delivery systems.  相似文献   

9.
Novel protein chimeras constituted of "silk" and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG](n)) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 28 equiv of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial-compatible conditions, the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared with the genetically derived variants. In all cases, the structure of the protein/chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk-based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source), and approach to synthesis (genetic or chemical) can be used to "tune" the properties of the composite materials formed and is a general approach that can be used to prepare a range of materials for biomedical and sensor-based applications.  相似文献   

10.
Semipermeable membranes of cells frequently pose an obstacle in metabolic engineering by limiting uptake of substrates, intermediates, or xenobiotics. Previous attempts to overcome this barrier relied on the promiscuous nature of peptide transport systems, but often suffered from low versatility or chemical instability. Here, we present an alternative strategy to transport cargo molecules across the inner membrane of Escherichia coli based on chemical synthesis of a stable cargo-peptide vector construct, transport through the peptide import system, and efficient intracellular release of the cargo by the promiscuous enzyme γ-glutamyl transferase (GGT). Retaining the otherwise periplasmic GGT in the cytoplasm was critical for the functionality of the system, as was fine-tuning its expression in order to minimize toxic effects associated to cytoplasmic GGT expression. Given the established protocols of peptide synthesis and the flexibility of peptide transport and GGT, the system is expected to be suitable for a broad range of cargoes.  相似文献   

11.
MIS416 is an intact minimal cell wall skeleton derived from Proprionibacterium acnes that is phagocytosed by antigen presenting cells, including dendritic cells (DCs). This property allows MIS416 to be exploited as a vehicle for the delivery of peptide antigens or other molecules (for example, nucleic acids) to DCs. We previously showed that covalent (non-cleavable) conjugation of OVA, a model antigen derived from ovalbumin, to MIS416 enhanced immune responses in DCs in vivo, compared to unconjugated MIS416 and OVA. Intracellular trafficking promotes the lysosomal degradation of MIS416, leading to the destruction of MIS416 plus the associated cargos conjugated to MIS416. However, lysosomal degradation of cargo may not be desired for some MIS416 conjugates. Here we have investigated whether a cleavable linkage could facilitate release of the cargo in the cytoplasm of DCs to avoid lysosomal degradation. DCs were treated in vitro with disulfide-containing conjugates, and as hypothesised faster release of SIINFEKL peptide in the cytoplasm of DCs was observed with the inclusion of a disulfide bond between MIS416 and cargo. The inclusion of a cleavable disulfide bond in the conjugates did not significantly alter the amount of SIINFEKL antigens presented on MHC I molecules on DCs as compared with conjugates without a disulfide bond. However, the conjugates containing disulfide-linkages performed either slightly better (p<0.05) than, or the same as conjugates without a disulfide bond with respect to in vitro OT-1 T-cell proliferation induced by the presentation of SIINFEKL antigens on DCs, or DC activation studies, respectively. However, disulfide-containing conjugates were less effective than conjugates without a disulfide bond in in vivo cytotoxicity assays. In conclusion, inclusion of a disulfide bond in MIS416-peptide conjugates was associated with efficient release of peptides in the cytoplasm of DCs, an important consideration for MIS416-mediated delivery of degradation-sensitive cargoes. However, treatment of DCs with disulfide-containing conjugates did not significantly alter the presentation of peptide antigens on MHC class I molecules to T-cells, or greatly enhance antigen-associated T-cell proliferation in vitro.  相似文献   

12.
Abstract

Here we review a novel class of delivery vehicles based on pH-sensitive, moderately polar membrane peptides, which we call pH (Low) Insertion Peptides (pHLIPs), that target cells located in the acidic environment found in many diseased tissues, including tumours. Acidity targeting by pHLIPs is achieved as a result of helix formation and transmembrane insertion. In contrast to the earlier technologies based on cell-penetrating peptides, pHLIPs act as monomeric membrane-inserting peptides that translocate one terminus across a membrane into the cytoplasm, while the other terminus remains in the extracellular space, locating the peptide in the membrane lipid bilayer. Therefore pHLIP has a dual delivery capability: it can tether cargo molecules or nanoparticles to the surfaces of cells in diseased tissues and/or it can move a cell-impermeable cargo molecule across the membrane into the cytoplasm. The source of energy for moving polar molecules attached to pHLIP through the hydrophobic layer of a membrane bilayer is the membrane-associated folding of the polypeptide. A drop in pH leads to the protonation of negatively charged residues (Asp or Glu), which enhances peptide hydrophobicity, increasing the affinity of the peptide for the lipid bilayer and triggering peptide folding and subsequent membrane insertion. The process is accompanied by the release of energy that can be utilized to move cell-impermeable cargo across a membrane. That the mechanism is now understood, and that targeting of tumours in mice has been shown, suggest a number of future applications of the pHLIP technology in the diagnosis and treatment of disease.  相似文献   

13.
Clostridial botulinum neurotoxins (BoNTs) exert their neuroparalytic action by arresting synaptic exocytosis. Intoxication requires the disulfide-linked, di-chain protein to undergo conformational changes in response to pH and redox gradients across the endosomal membrane with consequent formation of a protein-conducting channel by the heavy chain (HC) that translocates the light chain (LC) protease into the cytosol. Here, we investigate the role of the disulfide bridge in the dynamics of protein translocation. We utilize a single channel/single molecule assay to characterize in real time the BoNT channel and chaperone activities in Neuro 2A cells under conditions that emulate those prevalent across endosomes. We show that the disulfide bridge must remain intact throughout LC translocation; premature reduction of the disulfide bridge after channel formation arrests translocation. The disulfide bridge must be on the trans compartment to achieve productive translocation of LC; disulfide disruption on the cis compartment or within the bilayer during translocation aborts it. We demonstrate that a peptide linkage between LC and HC in place of a disulfide bridge is insufficient for productive LC translocation. The disulfide linkage, therefore, dictates the outcome of translocation: productive passage of cargo or abortive channel occlusion by cargo. Based on these and previous findings we suggest a sequence of events for BoNT LC translocation to be HC insertion, coupled LC unfolding, and protein conduction through the HC channel in an N to C terminus orientation and ultimate release of the LC from the HC by reduction of the disulfide bridge concomitant with LC refolding in the cytosol.  相似文献   

14.
The Cu(I) catalyzed Huisgen 1,3‐dipolar azide‐alkyne cycloaddition (CuAAC) was applied for a nucleoside‐peptide bioconjugation. Systemin (Sys), an 18‐aa plant signaling peptide naturally produced in response to wounding or pathogen attack, was chemically synthesized as its N‐propynoic acid functionalized analog (Prp‐Sys) using the SPPS. Next, CuAAC was applied to conjugate Prp‐Sys with 3′‐azido‐2′,3′‐dideoxythymidine (AZT), a model cargo molecule. 1,4‐Linked 1,2,3‐triazole AZT‐Sys conjugate was designed to characterize the spreading properties and ability to translocate of cargo molecules of systemin. CuAAC allowed the synthesis of the conjugate in a chemoselective and regioselective manner, with high purity and yield. The presence of Cu(I) ions generated in situ drove the CuAAC reaction to completion within a few minutes without any by‐products. Under typical separation conditions of phosphate ‘buffer’ at low pH and uncoated fused bare‐silica capillary, an increasing peak intensity assigned to triazole‐linked AZT‐Sys conjugate was observed using capillary electrophoresis (CE) during CuAAC. CE analysis showed that systemin peptides are stable in tomato leaf extract for up to a few hours. CE‐ESI‐MS revealed that the native Sys and its conjugate with AZT are translocated through the tomato stem and can be directly detected in stem exudates. The results show potential application of systemin as a transporter of low molecular weight cargo molecules in tomato plant and of CE method to characterize a behavior of plant peptides and its analogs. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Arginine-rich peptide-mediated protein delivery into living cells is a novel technology for controlling cell functions with therapeutic potential. In this report, a novel approach for the intracellular delivery of histidine-tagged proteins was introduced where a Ni(II) chelate of octaarginine peptide bearing nitrilotriacetic acid [R8-NTA-Ni(II)] was used as a membrane-permeable carrier molecule. Significant internalization of histidine-tagged enhanced green fluorescent protein (EGFP) into HeLa cells was observed by confocal microscopic observation in the presence of R8-NTA-Ni(II). Nuclear condensation characteristic in apoptotic cell death was also induced in the cells treated with a histidine-tagged apoptosis-inducing peptide [pro-apoptotic domain peptide (PAD)], indicating that the cargo molecules really went through the membrane to reach the cytosol. The apoptosis-inducing activity of the peptide thus delivered was compared with that of the PAD peptide covalently connected with the octaarginine peptide.  相似文献   

16.
The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.  相似文献   

17.
Abstract Here we review a novel class of delivery vehicles based on pH-sensitive, moderately polar membrane peptides, which we call pH (Low) Insertion Peptides (pHLIPs), that target cells located in the acidic environment found in many diseased tissues, including tumours. Acidity targeting by pHLIPs is achieved as a result of helix formation and transmembrane insertion. In contrast to the earlier technologies based on cell-penetrating peptides, pHLIPs act as monomeric membrane-inserting peptides that translocate one terminus across a membrane into the cytoplasm, while the other terminus remains in the extracellular space, locating the peptide in the membrane lipid bilayer. Therefore pHLIP has a dual delivery capability: it can tether cargo molecules or nanoparticles to the surfaces of cells in diseased tissues and/or it can move a cell-impermeable cargo molecule across the membrane into the cytoplasm. The source of energy for moving polar molecules attached to pHLIP through the hydrophobic layer of a membrane bilayer is the membrane-associated folding of the polypeptide. A drop in pH leads to the protonation of negatively charged residues (Asp or Glu), which enhances peptide hydrophobicity, increasing the affinity of the peptide for the lipid bilayer and triggering peptide folding and subsequent membrane insertion. The process is accompanied by the release of energy that can be utilized to move cell-impermeable cargo across a membrane. That the mechanism is now understood, and that targeting of tumours in mice has been shown, suggest a number of future applications of the pHLIP technology in the diagnosis and treatment of disease.  相似文献   

18.
Multivalent cell-penetrating peptides (CPPs) have been reported to show enhancement in cellular uptake and endosomolytic activity. However, its application was limited to trans-delivery of cargo which is lower in cellular uptake efficiency of cargo than cis-delivery. Here, we tried the cis-delivery of cargo with multivalent CPP by preparing bioreducible dimeric CPP–cargo with apoptotic activity using TatBim peptide, a fusion of Tat CPP and Bim peptide derived from Bim apoptosis-inducing protein. Dimeric TatBim was almost twice as highly internalized by cells and significantly induced apoptosis compared to monomeric TatBim. Contribution of bioreducible linkage of dimeric TatBim towards apoptotic activity was also confirmed.  相似文献   

19.
Chen C  Pu F  Huang Z  Liu Z  Ren J  Qu X 《Nucleic acids research》2011,39(4):1638-1644
A novel proton-fueled molecular gate-like delivery system has been constructed for controlled cargo release using i-motif quadruplex DNA as caps onto pore outlets of mesoporous silica nanoparticles. Start from simple conformation changes, the i-motif DNA cap can open and close the pore system in smart response to pH stimulus. Importantly, the opening/closing and delivery protocol is highly reversible and a partial cargo delivery can be easily controlled at will. A pH-switchable nanoreactor has also been developed to validate the potential of our system for on-demand molecular transport. This proof of concept might open the door to a new generation of carrier materials and could also provide a general route to use other functional nucleic acids/peptide nucleic acids as capping agents in the fields of versatile controlled delivery nanodevices.  相似文献   

20.
Polypeptide release reaction was studied using a protein release factor and a physiological substrate containing a complete polypeptide chain attached to monosomes of the insect Tenebrio molitor. The intermediate substrate used for the release reaction was synthesized using a cell-free protein synthesizing system from Tenebrio capable of polypeptide synthesis but not release of the completed chain. This system synthesized predominantly adult cuticular protein. The released product was characterized by chromatography after tryptic digestion; many of the tryptic peptides corresponded to those of cuticule labeled in vivo. The protein release factor was obtained as microsomal wash and was further purified by ammonium sulfate precipitation and column chromatography. It released about 30% of the monosome-bound peptide in the absence of GTP. The remaining 70% of peptidyl-tRNA was released as peptidyl-puromycin in the absence of release factor, but required transferase II and GTP. The peptidyl-puromycin varied in size from dipeptide to almost complete protein. The puromycin reaction was inhibited by diphtheria toxin and NAD and was dependent on GTP, while the release of completed peptide was independent of GTP and not affected by diphtheria toxin and NAD. The release factor was capable of releasing formylmethionine as formylmethionine-puromycin from ribosomes in response to poly(A3,U). Hence it is suggested that the release factor is responding to UAA as terminating codon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号