首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schizosaccharomyces pombe Rho1p is essential, directly activates β-1,3-glucan synthase, and participates in the regulation of morphogenesis. In S. pombe, Rho1p is activated by at least three guanine nucleotide exchange factors (GEFs): Rgf1p, Rgf2p, and Rgf3p. In this study we show that Rgf2p is a Rho1p GEF required for sporulation. The rgf2+ deletion did not affect forespore membrane formation and the nuclei were encapsulated properly. However, the mutant ascospores appeared dark and immature. The rgf2Δ zygotes were not able to release the ascospores spontaneously, and the germination efficiency was greatly reduced compared to wild-type (wt) spores. This phenotype resembles that of the mutants in bgs2+, which encodes a sporulation-specific glucan synthase subunit. In fact, glucan synthase activity was diminished in sporulating rgf2Δ diploids. Rgf2p also plays a role in β-glucan biosynthesis during vegetative growth. Overexpression of rgf2+ specifically increased GTP-bound Rho1p, caused changes in cell morphology, and elicited an increase in β-1,3-glucan synthase activity. Moreover, the simultaneous disruption of rgf1+ and rgf2+ was lethal and both Rgf1p and Rgf2p were able to partially substitute for each other. Our results suggest that Rgf1p and Rgf2p are alternative GEFs with an essential overlapping function in Rho1p activation during vegetative growth.  相似文献   

2.
In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2. However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1 drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared to similar routes from other simple eukaryotic organisms.  相似文献   

3.
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. We have identified a new GEF, designated Rgf1p, which specifically regulates Rho1p during polarized growth. The phenotype of rgf1 null cells was very similar to that seen after depletion of Rho1p, 30% of cells being lysed. In addition, rgf1(+) deletion caused hypersensitivity to the antifungal drug Caspofungin and defects in the establishment of bipolar growth. rho1(+), but none of the other GTPases of the Rho-family, suppressed the rgf1Delta phenotypes. Moreover, deletion of rgf1(+) suppressed the severe growth defect in rga1(+) null mutants (a Rho1-GAP, negative regulator). Rgf1p and Rho1p coimmunoprecipitated and overexpression of rgf1(+) specifically increased the GTP-bound Rho1p; it caused changes in cell morphology, and a large increase in beta(1,3)-glucan synthase activity. These effects were similar to those elicited when the hyperactive rho1-G15V allele was expressed. A genetic relationship was observed between Rgf1p, Bgs4p (beta[1,3]-glucan synthase), and Pck1p (protein kinase C [PKC] homologue); Bgs4p and Pck1p suppressed the hypersensitivity to Caspofungin in rgf1Delta mutants. Rgf1p localized to the growing ends and the septum, where Rho1, Pck1p, and Bgs4p are known to function. Our results suggest that Rgf1p probably activates the Rho functions necessary for coordinating actin deposition with cell wall biosynthesis during bipolar growth, allowing the cells to remodel their wall without risk of rupture.  相似文献   

4.
5.
MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.  相似文献   

6.
We have previously demonstrated that knockout of the calcineurin gene or inhibition of calcineurin activity by immunosuppressants resulted in hypersensitivity to Cl- in fission yeast. We also demonstrated that knockout of the components of the Pmk1 mitogen-activated protein kinase (MAPK) pathway, such as Pmk1 or Pek1 complemented the hypersensitivity to Cl-. Using this interaction between calcineurin and Pmk1 MAPK, here we developed a genetic screen that aims to identify new regulators of the Pmk1 signaling and isolated vic (viable in the presence of immunosuppressant and chloride ion) mutants. One of the mutants, vic1-1, carried a missense mutation in the cpp1+ gene encoding a beta subunit of the protein farnesyltransferase, which caused an amino acid substitution of aspartate 155 of Cpp1 to asparagine (Cpp1(D155N)). Analysis of the mutant strain revealed that Rho2 is a novel target of Cpp1. Moreover, Cpp1 and Rho2 act upstream of Pck2-Pmk1 MAPK signaling pathway, thereby resulting in the vic phenotype upon their mutations. Interestingly, compared with other substrates of Cpp1, defects of Rho2 function were more phenotypically manifested by the Cpp1(D155N) mutation. Together, our results demonstrate that Cpp1 is a key component of the Pck2-Pmk1 signaling through the spatial control of the small GTPase Rho2.  相似文献   

7.
p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820–843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation.  相似文献   

8.
Rho GTPases, activated by guanine nucleotide exchange factors (GEFs), are essential regulators of polarized cell growth, cytokinesis, and many other cellular processes. However, the regulation of Rho-GEFs themselves is not well understood. Rgf3 is an essential GEF for Rho1 GTPase in fission yeast. We show that Rgf3 protein levels and localization are regulated by arrestin-related protein Art1. art1∆ cells lyse during cell separation with a thinner and defective septum. As does Rgf3, Art1 concentrates to the contractile ring starting at early anaphase and spreads to the septum during and after ring constriction. Art1 localization depends on its C-terminus, and Art1 is important for maintaining Rgf3 protein levels. Biochemical experiments reveal that the Rgf3 C-terminus binds to Art1. Using an Rgf3 conditional mutant and mislocalization experiments, we found that Art1 and Rgf3 are interdependent for localization to the division site. As expected, active Rho1 levels at the division site are reduced in art1∆ and rgf3 mutant cells. Taken together, these data reveal that the arrestin family protein Art1 regulates the protein levels and localization of the Rho-GEF Rgf3, which in turn modulates active Rho1 levels during fission yeast cytokinesis.  相似文献   

9.
Pre-replicative complex (pre-RC) assembly is a critical part of the mechanism that controls the initiation of DNA replication, and ATP binding and hydrolysis by multiple pre-RC proteins are essential for pre-RC assembly and activation. Here, we demonstrate that Adk1p (adenylate kinase 1 protein) plays an important role in pre-RC assembly in Saccharomyces cerevisiae. Isolated from a genetic screen, adk1G20S cells with a mutation within the nucleotide-binding site were defective in replication initiation. adk1Δ cells were viable at 25 °C but not at 37°C. Flow cytometry indicated that both the adk1-td (temperature-inducible degron) and adk1G20S mutants were defective in S phase entry. Furthermore, Adk1p bound to chromatin throughout the cell cycle and physically interacted with Orc3p, whereas the Adk1G20S protein had a reduced ability to bind chromatin and Orc3p without affecting the cellular ATP level. In addition, Adk1p associated with replication origins by ChIP assay. Finally, Adk1-td protein depletion prevented pre-RC assembly during the M-to-G1 transition. We suggest that Adk1p regulates ATP metabolism on pre-RC proteins to promote pre-RC assembly and activation.  相似文献   

10.
11.
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.  相似文献   

12.
In the budding yeast Saccharomyces cerevisiae, osmostress activates the Hog1 mitogen-activated protein kinase (MAPK), which regulates diverse osmoadaptive responses. Hkr1 is a large, highly glycosylated, single-path transmembrane protein that is a putative osmosensor in one of the Hog1 upstream pathways termed the HKR1 subbranch. The extracellular region of Hkr1 contains both a positive and a negative regulatory domain. However, the function of the cytoplasmic domain of Hkr1 (Hkr1-cyto) is unknown. Here, using a mass spectrometric method, we identified a protein, termed Ahk1 (Associated with Hkr1), that binds to Hkr1-cyto. Deletion of the AHK1 gene (in the absence of other Hog1 upstream branches) only partially inhibited osmostress-induced Hog1 activation. In contrast, Hog1 could not be activated by constitutively active mutants of the Hog1 pathway signaling molecules Opy2 or Ste50 in ahk1Δ cells, whereas robust Hog1 activation occurred in AHK1+ cells. In addition to Hkr1-cyto binding, Ahk1 also bound to other signaling molecules in the HKR1 subbranch, including Sho1, Ste11, and Pbs2. Although osmotic stimulation of Hkr1 does not activate the Kss1 MAPK, deletion of AHK1 allowed Hkr1 to activate Kss1 by cross talk. Thus, Ahk1 is a scaffold protein in the HKR1 subbranch and prevents incorrect signal flow from Hkr1 to Kss1.  相似文献   

13.
A signaling network called the unfolded protein response (UPR) resolves the protein-folding defects in the endoplasmic reticulum (ER) from yeasts to humans. In the yeast Saccharomyces cerevisiae, the UPR activation involves (i) aggregation of the ER-resident kinase/RNase Ire1 to form an Ire1 focus, (ii) targeting HAC1 pre-mRNA toward the Ire1 focus that cleaves out an inhibitory intron from the mRNA, and (iii) translation of Hac1 protein from the spliced mRNA. Targeting HAC1 mRNA to the Ire1 focus requires a cis-acting bipartite element (3′BE) located at the 3′ untranslated leader. Here, we report that the 3′BE plays an additional role in promoting translation from the spliced mRNA. We also report that a high dose of either of two paralogue kinases, Kin1 and Kin2, overcomes the defective UPR caused by a mutation in the 3′BE. These results define a novel role for Kin kinases in the UPR beyond their role in cell polarity and exocytosis. Consistently, targeting, splicing, and translation of HAC1 mRNA are substantially reduced in the kin1Δ kin2Δ strain. Furthermore, we show that Kin2 kinase domain itself is sufficient to activate the UPR, suggesting that Kin2 initiates a signaling cascade to ensure an optimum UPR.  相似文献   

14.
15.
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.  相似文献   

16.
17.
A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6ΔΔ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6ΔΔ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6 snRNA and U4/U6 di-snRNA levels in rsc8-ts16 nhp6ΔΔ cells is indicative of splicing deficient conditions. We identify MRN1 (multi-copy suppressor of rsc nhp6ΔΔ) as a growth suppressor of rsc nhp6ΔΔ synthetic sickness. Mrn1 is an RNA binding protein that localizes both to the nucleus and cytoplasm. Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309Δ, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing.  相似文献   

18.
To initiate and establish infection in mammals, the opportunistic fungal pathogen Cryptococcus neoformans must survive and thrive upon subjection to host temperature. Primary maintenance of cell integrity is controlled through the protein kinase C1 (PKC1) signaling pathway, which is regulated by a Rho1 GTPase in Saccharomyces cerevisiae. We identified three C. neoformans Rho GTPases, Rho1, Rho10, and Rho11, and have begun to elucidate their role in growth and activation of the PKC1 pathway in response to thermal stress. Western blot analysis revealed that heat shock of wild-type cells resulted in phosphorylation of Mpk1 mitogen-activated protein kinase (MAPK). Constitutive activation of Rho1 caused phosphorylation of Mpk1 independent of temperature, indicating its role in pathway regulation. A strain with a deletion of RHO10 also displayed this constitutive Mpk1 phosphorylation phenotype, while one with a deletion of RHO11 yielded phosphorylation similar to that of wild type. Surprisingly, like a rho10Δ strain, a strain with a deletion of both RHO10 and RHO11 displayed temperature sensitivity but mimicked wild-type phosphorylation, which suggests that Rho10 and Rho11 have coordinately regulated functions. Heat shock-induced Mpk1 phosphorylation also required the PKC1 pathway kinases Bck1 and Mkk2. However, Pkc1, thought to be the major regulatory kinase of the cell integrity pathway, was dispensable for this response. Together, our results argue that Rho proteins likely interact via downstream components of the PKC1 pathway or by alternative pathways to activate the cell integrity pathway in C. neoformans.  相似文献   

19.
20.
Yeast contains at least two complex forms of RNA polymerase II (Pol II), one including the Srbps and a second biochemically distinct form defined by the presence of Paf1p and Cdc73p (X. Shi et al., Mol. Cell. Biol. 17:1160–1169, 1997). In this work we demonstrate that Ccr4p and Hpr1p are components of the Paf1p-Cdc73p-Pol II complex. We have found many synthetic genetic interactions between factors within the Paf1p-Cdc73p complex, including the lethality of paf1Δ ccr4Δ, paf1Δ hpr1Δ, ccr4Δ hpr1Δ, and ccr4Δ gal11Δ double mutants. In addition, paf1Δ and ccr4Δ are lethal in combination with srb5Δ, indicating that the factors within and between the two RNA polymerase II complexes have overlapping essential functions. We have used differential display to identify several genes whose expression is affected by mutations in components of the Paf1p-Cdc73p-Pol II complex. Additionally, as previously observed for hpr1Δ, deleting PAF1 or CDC73 leads to elevated recombination between direct repeats. The paf1Δ and ccr4Δ mutations, as well as gal11Δ, demonstrate sensitivity to cell wall-damaging agents, rescue of the temperature-sensitive phenotype by sorbitol, and reduced expression of genes involved in cell wall biosynthesis. This unusual combination of effects on recombination and cell wall integrity has also been observed for mutations in genes in the Pkc1p-Mpk1p kinase cascade. Consistent with a role for this novel form of RNA polymerase II in the Pkc1p-Mpk1p signaling pathway, we find that paf1Δ mpk1Δ and paf1Δ pkc1Δ double mutants do not demonstrate an enhanced phenotype relative to the single mutants. Our observation that the Mpk1p kinase is fully active in a paf1Δ strain indicates that the Paf1p-Cdc73p complex may function downstream of the Pkc1p-Mpk1p cascade to regulate the expression of a subset of yeast genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号