首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of 1,2,3-triazole-derived naphthalimides as a novel type of potential antimicrobial agents were synthesized and characterized by IR, NMR and HRMS spectra. All the new compounds were screened for their antimicrobial activity against four Gram-positive bacteria, four Gram-negative bacteria and three fungi. Bioactive assay manifested that 3,4-dichlorobenzyl compound 9e and its corresponding hydrochloride 11e showed better anti-Escherichia coli activity than Norfloxacin and Chloromycin. Preliminary research revealed that compound 9e could effectively intercalate into calf thymus DNA to form compound 9e–DNA complex which might block DNA replication and thus exert antimicrobial activities. Human serum albumin could effectively store and carry compound 9e by electrostatic interaction.  相似文献   

2.
Naphthalimide-derived azoles as a new type of antimicrobial agents were synthesized and evaluated for their efficiency in vitro against eight bacteria and two fungi by two fold serial dilution technique. Most title compounds exhibited good antimicrobial potency with low MIC values ranging from 1 to 16 μg/mL. Notably, some synthesized compounds displayed comparable or even better antibacterial and antifungal activities against some tested strains than the reference drugs Orbifloxacin, Chloromycin and Fluconazole, respectively.  相似文献   

3.
A series of new coumarin-based 1,2,4-triazole derivatives were designed, synthesized and evaluated for their antimicrobial activities in vitro against four Gram-positive bacteria (Staphylococcus aureus, MRSA, Bacillus subtilis and Micrococcus luteus), four Gram-negative bacteria (Escherichia coli, Proteus vulgaris, Salmonella typhi and Shigella dysenteriae) as well as three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus fumigatus) by two-fold serial dilution technique. The bioactive assay showed that some synthesized coumarin triazoles displayed comparable or even better antibacterial and antifungal efficacy in comparison with reference drugs Enoxacin, Chloromycin and Fluconazole. Coumarin bis-triazole compounds exhibited stronger antibacterial and antifungal efficiency than their corresponding mono-triazole derivatives.  相似文献   

4.
A series of coumarin appended formyl-pyrazoles 1418 were synthesized by a simple and accessible approach. The reaction of 8-acetyl-4-methyl-7-hydroxy coumarin 3 and phenyl hydrazine hydrochlorides 48 produces the intermediate compounds 8-acetyl-4-methyl-7-hydroxy coumarin hydrazones 913. The reaction of compounds 913 and DMF in the presence of POCl3 yielded formyl-pyrazoles bearing coumarin moiety 1418 in good yield. The synthesized new compounds 1418 and the intermediates 8-acetyl-4-methyl-7-hydroxy coumarin hydrazones 913 prepared were screened in vitro for their antibacterial, antifungal antioxidant activities. The compounds 12 and 17 having chloro substitution exhibited promising antifungal and antibacterial activity against the different organisms tested. The compound 17 showed remarkable DPPH radical scavenging ability.  相似文献   

5.
A novel mathematical approach for investigation of drug–human serum albumin (HSA) interactions by means of high-performance liquid affinity chromatography is developed. The model is based on the assumption that two types of competitive binding sites exist on the HSA molecule. The widely used single-site binding equation is extended and a proper mathematical analysis is proposed allowing the determination of the major parameters characterizing the multisite binding (cobinding) process. The utility of the new approach is proved by competitive studies on HSA binding of two model drugs, diazepam and diclofenac.  相似文献   

6.
A new series of triazol-3-one derivatives bearing 4-methyl-4H-thieno[3',2': 5,6]thiopyrano[4,3-d][1,3]thiazolyl or 4-(thiophene-3-yl) thiazolyl moiety at 4-position and alkyl substitution at 2-position are synthesized. All the synthesized compounds are characterized by elemental analysis, IR, (1)H NMR, (13)C NMR, and mass spectral data. The newly synthesized compounds are screened for antifungal and antibacterial activities.  相似文献   

7.
Metronidazole has a broad-spectrum antibacterial activity. Hereby a series of novel metronidazole derivatives were designed and synthesized based on nitroimidazole scaffold in order to find some more potent antibacterial drugs. For these compounds which were reported for the first time, their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4m represented the most potent antibacterial activity against S. aureus ATCC 25923 with MIC of 0.003 μg/mL and it showed the most potent activity against S. aureus TyrRS with IC50 of 0.0024 μM. Molecular docking of 4m into S. aureus tyrosyl-tRNA synthetase active site were also performed to determine the probable binding mode.  相似文献   

8.
A series of novel coumarinazoles were designed, synthesized, and characterized by IR, NMR, MS and HRMS spectra. The bioactive assay for the newly prepared compounds against six bacteria and five fungi manifested that most new compounds exhibited good or even stronger antibacterial and antifungal activities in comparison with reference drugs Chloromycin, Norfloxacin and Fluconazole. Bis-azole alcohols 7a and 7de showed better anti-Candida utilis activity than mono-azole derivatives 4a and 4de at the tested concentrations, and they were more potent than the clinical Fluconazole. While triazole alcohol 7a gave comparable anti-Candida albicans and anti-Candida mycoderma activity to Fluconazole and better anti-MRSA activity than mono-triazole one 4a and clinical Norfloxacin. 1H-Benzoimidazol-2-ylthio coumarin derivatives 4e and 7e gave the strongest anti-Escherichia coli JM109 efficacy. Oxiran-2-ylmethoxy moiety was found to be a beneficial fragment to improve antibacterial and antifungal activity to some extent.  相似文献   

9.
Antioxidant protection of human serum albumin by chitosan   总被引:1,自引:0,他引:1  
Inhibition of protein oxidation by reactive oxygen species (ROS) would confer benefit to living organisms exposed to oxidative stress, because oxidized proteins are associated with many diseases and can propagate ROS-induced damage. We measured the ability of 2800Da chitosan, D-glucosamine and N-acetyl glucosamine to protect human serum albumin from oxidation by peroxyl radicals derived from 2,2'-azobis(2-amidinopropane)dihydrochloride and N-centered radicals from 1,1'-diphenyl-2-picrylhydrazyl and from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Comparison with the antioxidant action of vitamin C showed that, on a molar basis, chitosan was equally effective in preventing formation of carbonyl and hydroperoxide groups in human serum albumin exposed to peroxyl radicals. It was also a potent inhibitor of conformational changes in the protein, assessed by absorption spectrum and intrinsic fluorescence. D-glucosamine was much less effective and N-acetyl glucosamine was not a useful antioxidant. Protection of the albumin from peroxyl radicals was achieved by scavenging of peroxyl radical. Chitosan was also a good scavenger of N-centered radicals, with glucosamine and N-acetyl glucosamine much less effective. The results suggest that administration of low molecular weight chitosans may inhibit neutrophil activation and oxidation of serum albumin commonly observed in patients undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia.  相似文献   

10.
Synthesis and bioevaluation of new diaryl ether hybridized quinoline derivatives as antiplasmodial, antibacterial and antifungal agents is reported. It was encouraging to discover that several compounds displayed 2–3 folds better efficacy than chloroquine in chloroquine-resistant K1 strain of Plasmodium falciparum. Further, a few members of the library displayed good antibacterial efficacy against gram positive strains of bacteria but none of the compounds displayed any significant antifungal activity.  相似文献   

11.
High-performance affinity chromatography was used to study the binding of phenytoin to an immobilized human serum albumin (HSA) column. This was accomplished through frontal analysis and competitive binding zonal elution experiments, the latter of which used four probe compounds for the major and minor binding sites of HSA injected into the presence of mobile phases containing known concentrations of phenytoin. It was found that phenytoin can interact with HSA at the warfarin-azapropazone, indole-benzodiazepine, tamoxifen, and digitoxin sites of this protein. The association constants for phenytoin at the indole-benzodiazepine and digitoxin sites were determined to be 1.04 (+/-0.05) x 10(4)M(-1) and 6.5 (+/-0.6) x 10(3)M(-1), respectively, at pH 7.4 and 37 degrees C. Both allosteric interactions and direct binding for phenytoin appear to take place at the warfarin-azapropazone and tamoxifen sites. This rather complex binding system indicates the importance of identifying the binding regions on HSA for specific drugs as a means for understanding the transport of such substances in blood and in characterizing their potential for drug-drug interactions.  相似文献   

12.
A novel series of quinolone triazoles were synthesized and characterized by IR, NMR, MS and HRMS spectra. All the newly prepared compounds were screened for their antimicrobial activities against seven bacteria and four fungi. Bioactive assay manifested that most of new compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains including multi-drug resistant MRSA in comparison with reference drugs Norfloxacin, Chloromycin and Fluconazole. The preliminary interactive investigations of compound 6b with calf thymus DNA by fluorescence and UV–vis spectroscopic methods revealed that compound 6b could effectively intercalate DNA to form compound 6b–DNA complex which might block DNA replication and thus exert its antimicrobial activities.  相似文献   

13.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

14.
A series of new N-substituted 1H-dibenzo[a,c]carbazole derivatives were synthesized from dehydroabietic acid, and their structures were characterized by IR, 1H NMR and HRMS spectral data. All compounds were evaluated for their antibacterial and antifungal activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas fluorescens) and three fungi (Candida albicans, Candida tropicalis and Aspergillus niger) by serial dilution technique. Some of the synthesized compounds displayed pronounced antimicrobial activity against tested strains with low MIC values ranging from 0.9 to 15.6 μg/ml. Among them, compounds 6j and 6r exhibited potent inhibitory activity comparable to reference drugs amikacin and ketoconazole.  相似文献   

15.
The interaction of a novel bioactive agent N‐{[N‐(2‐dimethylamino) ethyl] acridine‐4‐carboxamide}‐α‐alanine [N‐(ACR‐4‐CA)‐α‐ALA] with human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV–vis absorption and circular dichroism spectrophotometric techniques under simulative physiological conditions. The fluorescence quenching of HSA by addition of N‐(ACR‐4‐CA)‐α‐ALA is due to static quenching and hydrogen bonding. Moreover, hydrophobic interactions play a role in the binding of N‐(ACR‐4‐CA)‐α‐ALA to HSA as well. The number of binding sites, n, and the binding constant values, KA, were noted to be 0.88 and 3.4 × 104 L mol?1 for N‐(ACR‐4‐CA)‐α‐ALA at 293 K. The binding distances and the energy transfer efficiency between N‐(ACR‐4‐CA)‐α‐ALA and protein were determined. The negative value of enthalpy change and positive value of entropy change in the present study indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of N‐(ACR‐4‐CA)‐α‐ALA to HSA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The use of immobilized human serum albumin (HSA) as a stationary phase in affinity chromatography has been shown to be useful in resolving optical antipodes or to investigate interactions between drugs and protein. However, to our knowledge, no inorganic ion binding has been studied on this immobilized protein type. To do this, the human serum albumin stationary phase was assimilated to a weak cation-exchanger by working with a mobile phase pH equal to 6.5. A study of the eluent ionic strength effect on ion retention was carried out by varying the buffer concentrations and the column temperatures. The thermodynamic parameters for magnesium and calcium transfer from the mobile to the stationary phase were determined from linear van’t Hoff plots. An enthalpy–entropy compensation study revealed that the type of interaction was independent of the mobile phase composition. A simple model based on the Gouy–Chapman theory was considered in order to describe the retention behavior of the test cations with the mobile phase ionic strength. From this theoretical approach, the relative charge densities of the human serum albumin surface implied in the binding process were estimated at different column temperatures.  相似文献   

17.
The commercially available dye, NanoOrange, has been investigated as a potential tool for clinical diagnostics due to its low cost, ease of use, and ability to detect nanomolar concentrations of protein. Virtually non-fluorescent in dilute aqueous solutions, NanoOrange fluorescence is enhanced by at least an order of magnitude upon non-covalent interaction with proteins. These features, coupled with the requirement for high throughput assays in the clinical laboratory has prompted the development of two orthogonal NanoOrange approaches. Human serum albumin (HSA) was used as a model protein for the development of both 96-well microplate and capillary electrophoresis laser-induced fluorescence (CE–LIF) assay formats. Dye performance in five commonly used buffers of various concentrations and pH indicated considerable flexibility in assay buffer selection, with optimal performance at pH 9.0. A salt concentration study indicated that increasing NaCl concentration generally decreases fluorescence emission and can be minimized by pre-diluting biological samples to a final salt concentration of 20–80 mM. Titration of protein with NanoOrange resulted in optimal HSA–NanoOrange complex formation utilizing 1× and 2× NanoOrange in the 96-well microplate and CE–LIF approaches, respectively. A NanoOrange binding model based on rapid signal enhancement and zero order fluorescence emission kinetics is proposed. The utilization of NanoOrange in CE–LIF based human serum analysis results in a signal-to-background ratio improvement of up to two orders of magnitude.  相似文献   

18.
Three techniques, electrospray mass spectrometry, ultrafiltration, and proton relaxometry, are compared in the context of the quantitative analysis of non-covalent binding between human serum albumin (HSA) and MRI contrast agents. The study of the affinity by proton relaxometry reveals the association constant and the number of interaction sites assuming that all sites are identical and independent. Ultrafiltration was adapted for the study of paramagnetic complexes. This technique confirmed the results obtained by relaxometry. Electrospray mass spectrometry, an original method able to study non-covalent binding because of its soft ionization process that allows for the survival of weak binding, provides qualitative and quantitative results. Electrospray mass spectrometry confirmed the affinity measured by proton relaxometry and ultrafiltration. This technique requires very small amounts of products and directly gives the stoichiometry of the association, information not easily obtained by classic techniques. Nevertheless, proton relaxometry remains a useful and mandatory technique for determining the enhancement of the relaxation subsequent to the binding although it demands large amounts of compounds. It is to be pointed out that even if the three techniques lead to a similar ranking of the affinity of the contrast agents for HSA, the absolute values of the association constants disagree as a result of the difference in the experimental conditions (presence of salt, native protein or desalted one, approximations in the fitting of the data, liquid or gas phases).  相似文献   

19.
Search for new antimicrobial agents led to the synthesis of series of N-1, C-3 and C-5 substituted bis-indoles. Their evaluation for antifungal and antibacterial activities resulted in the optimization of pyrrolidine/morpholine/N-benzyl moiety at the C-3 end and propane/butane/xylidine groups as linkers between two indoles for significant inhibition of microbial growth. Preliminary investigations have identified three highly potent antimicrobial agents. Dockings of these molecules in the active sites of lanosterol demethylase, dihydrofolate reductase and topoisomerase II indicate their strong interactions with these enzymes.  相似文献   

20.
1,2,4-Triazole is a very important scaffold in medicinal chemistry due to the wide spectrum of biological activities and mainly antifungal activity of 1,2,4-triazole derivatives. The main mechanism of antifungal action of the latter is inhibition of 14-alpha-demethylase enzyme (CYP51). The current study presents synthesis and evaluation of eight triazole derivatives for their antimicrobial activity. Docking studies to elucidate the mechanism of action were also performed. The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. All tested compounds showed good antibacterial activity with MIC and MBC values ranging from 0.0002 to 0.0069 mM. Compound 2 h appeared to be the most active among all tested with MIC at 0.0002–0.0033 mM and MBC at 0.0004–0.0033 mM followed by compounds 2f and 2g. The most sensitive bacterium appeared to be Xanthomonas campestris while Erwinia amylovora was the most resistant. The evaluation of antifungal activity revealed that all compounds showed good antifungal activity with MIC values ranging from 0.02 mM to 0.52 mM and MFC from 0.03 mM to 0.52 mM better than reference drugs ketoconazole (MIC and MFC values at 0.28–1.88 mM and 0.38 mM to 2.82 mM respectively) and bifonazole (MIC and MFC values at 0.32–0.64 mM and 0.64–0.81 mM). The best antifungal activity is displayed by compound 2 h with MIC at 0.02–0.04 mM and MFC at 0.03–0.06 mM while compound 2a showed the lowest activity. The results showed that these compounds could be lead compounds in search for new potent antimicrobial agents. Docking studies confirmed experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号