首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In attempt to make significant pharmacologically active molecule, we report here the synthesis and in vitro antimicrobial and antitubercular activity of various series of 3-(3-pyridyl)-5-(4-nitrophenyl)-4-(N-substituted-1,3-benzothiazol-2-amino)-4H-1,2,4-triazole. The antimicrobial activity of title compounds were examined against two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), and three fungi (Candida albicans, Aspergillus niger, Aspergillus clavatus) using the broth microdilution method and antitubercular activity H37Rv using Lowenstein-Jensen agar method.  相似文献   

2.
Series of 1,2,4-triazole Schiff bases (2a-2d, 2f-2h and 3a-3h) have been designed and synthesized. The structure of title compounds was confirmed on the basis of their spectral data and elemental analysis. All the target compounds were screened for their in vitro antifungal activity and antibacterial activity. Two of the tested compounds (2a and 2b) exhibited significant antifungal activity against most fungi, especially compound 2a showed better antifungal activity than triadimefon. Meanwhile, the antibacterial activity assay also indicated compound 2a exhibited excellent antibacterial activities comparable to chloramphenicol. The SAR manifested no substitution at position 5 of the triazole ring caused an increase in activity, and 3-phenoxy phenyl group introduced in 1,2,4-triazole scaffold can enhance the antibacterial activity. The DFT calculation indicated triazole ring, S atom and benzene ring in both of the 2a and 3a make a major contribution to the activity.  相似文献   

3.
The isoquinolinone-based tricyclic compounds were designed and synthesized. Preliminary biological study of these compounds provided potent compounds 17a, 33b, 33c, 33d, and 33g with low nanomolar IC50s against PARP-1 enzyme.  相似文献   

4.
In this work, the first mutual prodrug of 5-fluorouracil and heme oxygenase1 inhibitor (5-FU/HO-1 hybrid) has been designed, synthesised, and evaluated for its in vitro chemical and enzymatic hydrolysis stability. Predicted in silico physicochemical properties of the newly synthesised hybrid (3) demonstrated a drug-like profile with suitable Absorption, Distribution, Metabolism, and Excretion (ADME) properties and low toxic liabilities. Preliminary cytotoxicity evaluation towards human prostate (DU145) and lung (A549) cancer cell lines demonstrated that 3 exerted a similar effect on cell viability to that produced by the reference drug 5-FU. Among the two tested cancer cell lines, the A549 cells were more susceptible for 3. Of note, hybrid 3 also had a significantly lower cytotoxic effect on healthy human lung epithelial cells (BEAS-2B) than 5-FU. Altogether our results served as an initial proof-of-concept to develop 5-FU/HO-1 mutual prodrugs as potential novel anticancer agents.  相似文献   

5.
A series of new 3-substitutedphenyl-4-substitutedbenzylideneamino-1,2,4-triazole Mannich bases and bis-Mannich bases were synthesized through Mannich reaction with high yields. Their structures were confirmed by means of IR, 1H NMR, 13C NMR and elemental analysis. The preliminary bioassay indicated that compounds 7g, 7h and 7l exhibited potent in vitro inhibitory activities against ketol-acid reductoisomerase (KARI) with Ki value of (0.38?±?0.25), (6.59?±?2.75) and (8.46?±?3.99)?μmol/L, respectively, and were comparable with IpOHA. They could be new KARI inhibitors for follow-up research. Some of the title compounds also exhibited obvious herbicidal activities against Echinochloa crusgalli and remarkable in vitro fungicidal activities against Physalospora piricola and Rhizoctonia cerealis. The SAR of the compounds were analyzed, in which the molecular docking revealed the binding mode of 7g with the KARI, and the 3D-QSAR results provided useful information for guiding further optimization of this kind of structures to discover new fungicidal agents towards Rhizoctonia cerealis.  相似文献   

6.
Two series of novel kojic acid analogues (4aj) and (5ad) were designed and synthesized, and their mushroom tyrosinase inhibitory activities was evaluated. The result indicated that all the synthesized derivatives exhibited excellent tyrosinase inhibitory properties having IC50 values in the range of 1.35 ± 2.15–17.50 ± 2.75 μM, whereas standard inhibitor kojic acid have IC50 values 20.00 ± 1.08 μM. Specifically, 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-benzylamino)-1,2,4-triazole (4f) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 1.35 ± 2.15 μM. The kinetic studies of the compound (4f) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was discussed.  相似文献   

7.
A series of novel benzyl-substituted (S)-phenylalanine derivatives were synthesized and evaluated for their dipeptidyl peptidase 4 (DPP-4) inhibitory activity and selectivity. It was found that most synthesized target compounds were potent DPP-4 inhibitors with IC50 values in 3.79–25.52 nM, which were significantly superior to that of the marketed drug sitagliptin. Furthermore, the 4-fluorobenzyl substituted phenylalanine derivative 6g not only displayed the potent DPP-4 inhibition with an IC50 value of 3.79 nM, but also showed better selectivity against DPP-4 over other related enzymes including DPP-7, DPP-8, and DPP-9. In an oral glucose tolerance test (OGTT) in normal Sprague Dawley rats, compound 6g reduced blood glucose excursion in a dose-dependent manner.  相似文献   

8.
Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR–TK inhibitory activity. Especially, N6-((5-bromothiophen-2-yl)methyl)-N4-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50 = 3.11 μM for Hep G2, IC50 = 0.82 μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells.  相似文献   

9.
HDAC and CDK inhibitors have been demonstrated to be synergistically in suppressing cancer cell proliferation and inducing apoptosis. In this work, we incorporated the pharmacophore groups of HDACs and CDKs inhibitors into one molecule to design and synthesize a series of purin derivatives as HDAC/CDK dual inhibitors. The lead compound 6d, showing good HDAC1 and CDK2 inhibitory activity with IC50 values of 5.8 and 56 nM, respectively, exhibited attractive potency against several cancer cell lines in vitro. This work may lead to the discovery of a novel scaffold and potential dual HDAC/CDK inhibitors.  相似文献   

10.
The discovery and optimization of imidazole cyclopropyl amime analogues as mutant IDH1 inhibitors via structure-based rational design were reported. The optimal compounds demonstrated both potent inhibition in IDH1R132H enzymatic activity and 2HG production in IDH1 mutant HT1080 cell line, moderate liver microsome stability and PK properties.  相似文献   

11.
A series of novel N-phenylacetyl (sulfonyl) 4,5-dihydropyrazole derivatives as potential telomerase inhibitors were synthesized. The bioassay tests show that compound 4a exhibited high activity against human gastric cancer cell SGC-7901, liver cancer Hep-G2 and human prostate PC-3 cell lines with IC50 values of 21.23 ± 0.99, 29.43 ± 0.32 and 30.89 ± 1.07 μM, respectively. All title compounds were assayed for telomerase inhibition by a modified TRAP assay, the results show that compound 4a can inhibit telomerase with IC50 value of 4.0 ± 0.32 μM. Docking simulation was performed to position compound 4a into the telomerase (3DU6) active site to determine the probable binding model.  相似文献   

12.
In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC50 = 31.70 μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC50 values in the range 0.01–1.86 µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC50 = 4.31 µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives.  相似文献   

13.
The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives based on our lead NCI 748494/1, possessing different N-linkers to aromatic and heterocyclic rings. In addition, a molecular hybrid series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-mercaptopurine (6-MP) was synthesized in order to explore its “double-drug” antitumor effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antitumor activity. Compound 3d showed potent inhibitory activity more than reference Foretinib, BMS-777607 and NCI 748494/1 with IC50 values in the range 0.01–0.31 µM against the cancer cell lines. The calculated IC50 of 3d against c-Met kinase was found to be 2.71 µM, which is more potent than NCI 748494/1 (IC50 = 31.70 µM). Docking studies were performed to identify the binding mode of 3d with c-Met kinase domain in comparison to moderate and weak derivatives. The present study clearly demonstrates that 1,2,4-triazine ring exhibits promising antitumor activity and the double-drug optimization strategy led to identifying 3d as a potent c-Met kinase inhibitor suitable for further development.  相似文献   

14.
The synthesis and X-ray crystal structure of the complex {[CuII(Ph2PBPT)(bpy)](ClO4)2 · 2DMF} where Ph2PBPT=4,4-(1,4-phenylene)bis[3-phenyl-5-(2-pyridyl)-4H-1,2,4-triazole], bpy=2,2-bipyridine and DMF=N,N-dimethylformamide are reported. In this one-dimensional coordination polymer the Cu2+ ions are in a distorted octahedral N6 coordination environment made up of two Ph2PBPT molecules, each chelating via one pyridine and one triazole nitrogen, and one bpy co-ligand. Within the zig-zag chain thus formed the shortest distance between two metal centres across the Ph2PBPT ligand is 13.305(3) Å while it is 10.009(3) Å between two chains. This complex represents the first structurally characterised example of a coordination compound incorporating a chelating 4,4-bis(4H-1,2,4-triazole) as a ligand.  相似文献   

15.
Two series of novel aryl-acrylic derivatives were designed, synthesized, and screened in enzymatic and cellular inhibitory activities. All compounds showed moderate to significant potency. The SAR analyses indicated that the semicarbazone linker is better than the 1,2,3-triazole linker. Among semicarbazone compounds that R1 bearing di-chain amino groups exhibited superior activities to those with morpholino group. Furthermore, compounds with electron-withdrawing groups at the 2-position or 4-position on the terminal phenyl ring were more active. Among these, compounds 7g, 7i, 7m and 7n exhibited the inhibitory potency in the low micromolar range and displayed negligible level of cytotoxicity against normal HeLa cells. In addition, the study suggested that the aryl-acrylic is an interesting novel scaffold for IDO1 inhibition for further development.  相似文献   

16.
Abstract

Fibroblast growth-factor receptor (FGFR) is a potential target for cancer therapy. We designed three novel series of FGFR1 inhibitors bearing indazole, benzothiazole, and 1H-1,2,4-triazole scaffold via fragment-based virtual screening. All the newly synthesised compounds were evaluated in vitro for their inhibitory activities against FGFR1. Compound 9d bearing an indazole scaffold was first identified as a hit compound, with excellent kinase inhibitory activity (IC50 = 15.0?nM) and modest anti-proliferative activity (IC50 = 785.8?nM). Through two rounds of optimisation, the indazole derivative 9?u stood out as the most potent FGFR1 inhibitors with the best enzyme inhibitory activity (IC50 = 3.3?nM) and cellular activity (IC50 = 468.2?nM). Moreover, 9?u also exhibited good kinase selectivity. In addition, molecular docking study was performed to investigate the binding mode between target compounds and FGFR1.  相似文献   

17.
A series of [1,2,4]triazolo[4,3-a]pyrazine derivatives (4a4i) were designed, synthesized and evaluated for their c-Met kinase inhibition and antitumor activity against SNU5 gastric cell line in vitro. Among these compounds, 4d was found to show the highest activity against c-Met and high selectivity against the tumor cells which are believed to be dependent on the c-Met oncogene amplification, because 4d selectively inhibited c-Met while had no effect on other 59 kinases. In vivo efficacy study on human gastric (MKN-45) and human non-small cell lung (NCI-H1993) tumor xenograft in nude mouse demonstrated that 4d·CH3SO3H had a better inhibiting activity than SGX-523 in a dose-dependent manner. When tested in mice, compound 4d·CH3SO3H was found to have biological half-lives and plasma exposure values higher than those of JNJ-38877605, and its long-term toxicity and acute toxicity turned out to be acceptable, all of which indicates that 4d·CH3SO3H is a desirable drug candidate.  相似文献   

18.
A novel series of 2-(3,6-dimethyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(4-substitutedbenzylidene)acetohydrazide (12ag) was prepared and their structures were confirmed by spectral and elemental analyses. The cytotoxic activity of the newly synthesized compounds was evaluated against breast carcinoma (MCF-7), non-small cell lung cancer (A549) and human colorectal adenocarcinoma (HT-29) cell lines using MTT and colony formation assays. The tested compounds showed a marked anticancer activity against all the tested cell lines, especially compound 12g, which was the most potent anticancer agent with half maximal inhibitory concentrations (IC50) between 5.36 and 9.09 μM. Docking studies into ATP binding site of EGFR protein tyrosine kinase were performed to predict their scores and mode of binding to amino acids, In addition, the inhibitory activity of the target compounds against epidermal growth factor receptor tyrosine kinase (EGFR-TK) was evaluated. Results indicated the ability of the target compounds to inhibit EGFR-TK with half maximal inhibitory concentrations (IC50) in the range of 4.18–35.88 μM. Furthermore, The most active compounds 12g, 12c and 12d were assayed against Fibroblast Growth Factor Receptor (FGFR), Insulin Receptor (IR) and Vascular Endothelial Growth Factor Receptor (VEGFR). The activity of the reported compounds warrants further optimization as novel members in cancer treatment protocols.  相似文献   

19.
20.
In this work, a series of novel benzimidazole derivatives were designed and synthesized as Pin1 inhibitors. Protease-coupled assay was used to investigate the Pin1 inhibitory potency of all synthesized compounds. Thirteen of them showed preferable Pin1 inhibitory effects with IC50 values lower than 5 μM, and 12a, 15b, 15d and 16c exhibited the most promising Pin1 inhibitory activity at low micromolar level (0.33–1.00 μM) than the positive control compound Juglone. Flow cytometry results showed that treating PC-3 cells with 16c caused slight cycle arrest in a concentration-dependent manner. The structure-activity relationships of R1, R2, R3 and linker of the benzimidazole derivatives were analyzed in detail, which would help further exploration of new Pin1 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号