首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, FRET confocal microscopy has shown that polymeric IgA-receptor (pIgA-R) is distributed in a clustered manner in apical endosomes. To test whether different membrane-bound components form clusters during membrane trafficking, live-cell quantitative FRET was used to characterize the organization of pIgA-R and transferrin receptor (TFR) in endocytic membranes of polarized MDCK cells upon internalization of donor- and acceptor-labeled ligands. We show that pIgA-R and TFR complexes form increasingly organized clusters during cotransport from basolateral to perinuclear endosomes. The organization of these receptor clusters in basolateral versus perinuclear/apical endosomes is significantly different; the former showing a mixed random/clustered distribution while the latter highly organized clusters. Our results indicate that although both perinuclear and apical endosomes comprise pIgA-R and TFR clusters, their E% levels are significantly different suggesting that these receptors are packed into clusters in a distinct manner. The quantitative FRET-based assay presented here suggests that different receptor complexes form clusters, with diverse levels of organization, while being cotransported via the polarized endocytic pathways.  相似文献   

2.
Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.  相似文献   

3.
Rab GTPases comprise a large family of monomeric proteins that regulate a diverse number of membrane trafficking events, including endocytosis. In this paper, we examine the subcellular distribution and function of the GTPase Rab15. Our biochemical and confocal immunofluorescence studies demonstrate that Rab15 associates with the transferrin receptor, a marker for the early endocytic pathway, but not with Rab7 or the cation-independent mannose 6-phosphate receptor, markers for late endosomal membranes. Furthermore, Rab15 colocalizes with Rab4 and -5 on early/sorting endosomes, as well as Rab11 on pericentriolar recycling endosomes. Consistent with its localization to early endosomal membranes, overexpression of the constitutively active mutant HArab15Q67L reduces receptor-mediated and fluid phase endocytosis. Therefore, our functional studies suggest that Rab15 may function as an inhibitory GTPase in early endocytic trafficking.  相似文献   

4.
Participation of diverse organelles in the intracellular signalling that follows CD95/Fas receptor ligation encompasses a series of subcellular changes that are mandatory for, or even bolster, the apoptotic cascade. In the present study, we analysed the role of endocytosis in the propagation of cell death signalling after CD95/Fas engagement in type II cells (CEM cells). We show that this receptor-ligand interaction triggers endocytosis independently of any caspase activation. This FasL (Fas ligand)-induced endocytosis also leads to an early and directional 'movement' of endocytic vesicles towards the mitochondrial compartment. In turn, this cross-talk between endosomal and mitochondrial compartments was followed by the loss of the mitochondrial membrane potential and apoptosis execution. This cell remodelling was absent in receptor-independent cell death, such as that induced by the mitochondriotropic drug staurosporine, and in a CEM cell line selected for its multidrug resistance (CEM VBL100). In these cells a reduced FasL (Fas ligand)-induced endocytosis and a reduced organelle cross-talk corresponded to a reduced apoptosis. Altogether, these findings suggest a key role of endocytosis in the propagation and amplification of the CD95/Fas-activated signalling leading to type II cell demise.  相似文献   

5.
Multivesicular bodies (MVBs) are endocytic compartments that contain intraluminal vesicles formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, these vesicles contain pro-apoptotic Fas ligand (FasL), which may be secreted as 'lethal exosomes' upon fusion of MVBs with the plasma membrane. Diacylglycerol kinase α (DGKα) regulate the secretion of exosomes, but it is unclear how this control is mediated. T-lymphocyte activation increases the number of MVBs that contain FasL. DGKα is recruited to MVBs and to exosomes in which it has a double function. DGKα kinase activity exerts a negative role in the formation of mature MVBs, as we demonstrate by the use of an inhibitor. Downmodulation of DGKα protein resulted in inhibition of both the polarisation of MVBs towards immune synapse and exosome secretion. The subcellular location of DGKα together with its complex role in the formation and polarised traffic of MVBs support the notion that DGKα is a key regulator of the polarised secretion of exosomes.  相似文献   

6.
The rapid internalization of receptor tyrosine kinases after ligand binding has been assumed to be a negative modulation of signal transduction. However, accumulating data indicate that signal transduction from internalized cell surface receptors also occurs from endosomes. We show that a substantial fraction of tyrosine-phosphorylated epidermal growth factor receptor (EGFR) and Shc, Grb2 and Cbl after internalization relocates from early endosomes to compartments which are negative for the early endosomes, recycling vesicle markers EEA1 and transferrin in EGF-stimulated cells. These compartments contained the multivesicular body and late endosome marker CD63, and the late endosome and lysosome marker LAMP-1, and showed a multivesicular morphology. Subcellular fractionation revealed that activated EGFR, adaptor proteins and activated ERK 1 and 2 were located in EEA1-negative and LAMP-1-positive fractions. Co-immunoprecipitations showed EGFR in complex with both Shc, Grb2 and Cbl. Treatment with the weak base chloroquine or inhibitors of lysosomal enzymes after EGF stimulation induced an accumulation of tyrosine-phosphorylated EGFR and Shc in EEA1-negative and CD63-positive vesicles after a 120-min chase period. This was accompanied by a sustained activation of ERK 1 and 2. These results suggest that EGFR signaling is not spatially restricted to the plasma membrane, primary vesicles and early endosomes, but is continuing from late endocytic trafficking organelles maturing from early endosomes.  相似文献   

7.
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein.  相似文献   

8.
The human cytomegalovirus (HCMV) has been shown to complete its final envelopment on cytoplasmic membranes prior to its secretion to the extracellular medium. However, the nature of these membranes has not been characterized. It is thought that HCMV acquires its final envelope from the trans‐Golgi network (TGN), though we and others have previously reported a role for endocytic membranes. Here we studied the localization of cellular markers in HCMV‐infected cells and in isolated viruses. Immunofluorescence staining indicated that HCMV induces the recruitment of TGN and endosomal markers to the virus factory. Immuno‐gold labelling of isolated viral particles and electron microscopy demonstrated the incorporation of TGN46, endosomal markers early endosomal antigen 1, annexin I, transferrin receptor and CD63, and the cation‐independent mannose 6‐phosphate receptor, which traffics between the TGN and endosomes into the viral envelope. Virus immunoprecipitation assays demonstrated that virions containing TGN46 and CD63 were infectious. This study reconciles the apparent controversy regarding the nature of the HCMV assembly site and suggests that HCMV has the ability to generate a novel membrane compartment containing markers for both TGN and endosomes, or that the membranes that HCMV uses for its envelope may be vesicles in transit between the TGN and endosomes.  相似文献   

9.
Cholesterol-rich membrane domains function in various membrane events as diverse as signal transduction and membrane traffic. We studied the interaction of a fluorescein ester of polyethylene glycol-derivatized cholesterol (fPEG-Chol) with cholesterol-rich membranes both in cells and in model membranes. Unlike filipin and other cholesterol probes, this molecule could be applied as an aqueous dispersion to various samples. When added to live cells, fPEG-Chol distributed exclusively in the outer plasma membrane leaflet and was enriched in microdomains that dynamically clustered by the activation of receptor signaling. The surface-bound fPEG-Chol was slowly internalized via clathrin-independent pathway into endosomes together with lipid raft markers. Noteworthy, fPEG-Chol could be microinjected in the living cells in which we found Golgi apparatus as the sole major organelle to be labeled. PEG-Chol, thus, provides a novel, sensitive probe for unraveling the dynamics of cholesterol-rich microdomains in living cells.  相似文献   

10.
The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic- like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1+, Rab5+ early endosomes. It does appear in Rab4+ early/sorting endosome, but, in the time period examined, fails to reach Rab11+ recycling or Rab7+ late endosomes or lysosome-associated membrane protein-1+ lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.  相似文献   

11.
Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.  相似文献   

12.
Subcellular organelles such as mitochondria, endoplasmic reticulum (ER) and the Golgi complex are involved in the progression of the cell death programme. We report here that soon after ligation of Fas (CD95/Apo1) in type II cells, elements of the Golgi complex intermix with mitochondria. This mixing follows centrifugal dispersal of secretory membranes and reflects a global alteration of membrane traffic. Activation of apical caspases is instrumental for promoting the dispersal of secretory organelles, since caspase inhibition blocks the outward movement of Golgi-related endomembranes and reduces their mixing with mitochondria. Caspase inhibition also blocks the FasL-induced secretion of intracellular proteases from lysosomal compartments, outlining a novel aspect of death receptor signalling via apical caspases. Thus, our work unveils that Fas ligand-mediated apoptosis induces scrambling of mitochondrial and secretory organelles via a global alteration of membrane traffic that is modulated by apical caspases.  相似文献   

13.
Antibodies raised to two membrane proteins present in rat liver endosomal fractions were used to study changes occurring in the endocytic compartment of hepatocytes during liver regeneration. Antibodies to the 42-kDa subunit (RHL-1) of the asialoglycoprotein receptor showed, by Western blotting of liver microsomes and endosomes, that there was a reduced expression of the receptor in liver 24 h following a partial hepatectomy. Immunocytochemical staining of thin sections of regenerating livers using these antibodies indicated that there was an intracellular relocation of endocytic structures in hepatocytes. The two main endocytic regions immunocytochemically stained in normal liver--one located beneath the sinusoidal plasma membrane and the other abutting the bile canaliculus--were replaced, in regenerating liver, by staining more closely associated with a region underlying the baso-lateral plasma membrane. A 140-kDa pI 4.3 calmodulin-binding protein located in endocytic and plasma membranes was also demonstrated, using a radio-iodinated calmodulin-binding assay, to be present at reduced levels in endosomes isolated from regenerating livers. Antibodies to this calmodulin-binding protein stained the hepatocyte's cytoplasm in a punctate manner. However, in regenerating liver, the staining was located in regions underlying the baso-lateral and apical plasma membrane of hepatocytes. Together, the results demonstrate that a reorganization of the endocytic compartment has occurred in hepatocytes 24 h following hepatectomy, with two endosomal proteins becoming relocated to a region below the baso-lateral-apical surface regions of hepatocytes.  相似文献   

14.
15.
Little is known about the molecular players that regulate changes in the endocytic pathway during immune activation. Here we investigate the role of Rab20 in the endocytic pathway during activation of macrophages. Rab20 is associated with endocytic structures, but the function of this Rab GTPase in the endocytic pathway remains poorly characterized. We find that in macrophages, Rab20 expression and endosomal association significantly increase after interferon-γ (IFN-γ) treatment. Moreover, IFN-γ and Rab20 expression induce a dramatic enlargement of endosomes. These enlarged endosomes are the result of homotypic fusion promoted by Rab20 expression. The expression of Rab20 or the dominant-negative mutant Rab20T19N does not affect transferrin or dextran 70 kDa uptake. However, knockdown of Rab20 accelerates epidermal growth factor (EGF) trafficking to LAMP-2–positive compartments and EGF receptor degradation. Thus this work defines a function for Rab20 in the endocytic pathway during immune activation of macrophages.  相似文献   

16.
Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.  相似文献   

17.
We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway.  相似文献   

18.
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.  相似文献   

19.
Annexin A6 (AnxA6) belongs to the highly conserved annexin protein family. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in a Ca2+-dependent manner, thereby interacting with cellular membranes in a dynamic, reversible and regulated fashion. Upon cell activation, AnxA6 is recruited to the plasma membrane, endosomes and caveolae/membrane rafts to interact with signalling proteins, the endocytic machinery and actin cytoskeleton to inhibit epidermal growth factor receptor and Ras signalling. In addition, AnxA6 associates with late endosomes to regulate cholesterol export leading to reduced cytoplasmic phospholipase A2 activity and caveolae formation. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to create a scaffold for the formation of multifactorial signalling complexes, (ii) to regulate transient membrane–actin interactions during endocytic transport, and (iii) to modulate intracellular cholesterol homeostasis. Altogether, this will regulate critical physiological processes including proliferation, differentiation, inflammation and cell migration.  相似文献   

20.
In the present study, we show that in human endothelial cells the tetraspanin CD63/lamp3 distributes predominantly to the internal membranes of multivesicular-multilamellar late endosomes, which contain the unique lipid lysobisphosphatidic acid. Some CD63/lamp3 is also present in Weibel-Palade bodies, the characteristic secretory organelle of these cells. We find that CD63/lamp3 molecules can be transported from late endosomes to Weibel-Palade bodies and thus that CD63/lamp3 cycles between endocytic and biosynthetic compartments; however, movement of CD63/lamp3 is much slower than that of P-selectin, which is known to cycle between plasma membrane and Weibel-Palade bodies. When cells are treated with U18666A, a drug that mimics the Niemann-Pick type C syndrome, both proteins accumulate in late endosomes and fail to reach Weibel-Palade bodies efficiently, suggesting that P-selectin, like CD63/lamp3, cycles via late endosomes. Our data suggest that CD63/lamp3 partitions preferentially within late endosome internal membranes, thus causing its accumulation, and that this mechanism contributes to CD63/lamp3 retention in late endosomes; however, our data also indicate that the protein can eventually escape from these internal membranes and recycle toward Weibel-Palade bodies to be reused. Our observations thus uncover the existence of a selective trafficking route from late endosomes to Weibel-Palade bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号