首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since publication of the well-known article by F.V. Bassin entitled "The force of the ego in psychological defense" [1], the various characteristics of psychological defense have been actively discussed in the Soviet psychological literature. Defense processes, defense mechanisms, neurotic psychological defense, and psychotic defense have been identified in addition to the classic set of defense mechanisms (repression, denial, rationalization, projection). In addition, some authors introduce such defense mechanisms as constriction, overevaluation, aggravation, and dysphoric defense.  相似文献   

2.
Prey organisms are confronted with time and resource allocation trade-offs. Time allocation trade-offs partition time, for example, between foraging effort to acquire resources and behavioral defense. Resource allocation trade-offs partition the acquired resources between multiple traits, such as growth or morphological defense. We develop a mathematical model for prey organisms that comprise time and resource allocation trade-offs for multiple defense traits. Fitness is determined by growth and survival during ontogeny. We determine optimal defense strategies for environments that differ in their resource abundance, predation risk, and defense effectiveness. We compare the results with results of simplified models where single defense traits are optimized. Our results indicate that selection acts in favor of integrated traits. The selective advantage of expressing multiple defense traits is most pronounced at intermediate environmental conditions. Optimizing single traits generally leads to a more pronounced response of the defense traits, which implies that studying single traits leads to an overestimation of their response to predation. Behavioral defense and morphological defense compensate for and augment each other depending on predator densities and the effectiveness of the defense mechanisms. In the presence of time constraints, the model shows peak investment into morphological and behavioral defense at intermediate resource levels.  相似文献   

3.
To examine the conditions selecting for induced defense, constitutive defense, and no-defense, we developed a model of plant defense strategy against herbivory. In the model, a plant consists of two modules between which signal inducing defense compounds can be translocated. We assume three strategies: plants produce defense compounds responding to herbivory (induced defense), they have the compounds beforehand (constitutive defense), and they never produce the compounds (no-defense). We found that no-defense is optimal if the amount of biomass lost due to herbivory is small because of the growth cost of having defense compounds. The constitutive defense is optimal if the amount of biomass lost is not so small and the probability of herbivory is high. If the biomass loss is not so small but the probability of herbivory is low, the induced defense or no-defense is optimal. When the induced defense is optimal, the probability of herbivory necessarily increases in plants once herbivory has occurred. If the probability stays the same, no-defense is optimal. Thus, the behavior of herbivores, i.e., whether they remain around a plant and attack it repeatedly, affects the evolution of the induced defense.  相似文献   

4.
The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.  相似文献   

5.
Specific defense protects against some parasite genotypes but not others, whereas non-specific defense is effective against all genotypes of a parasite. Some empirical studies observe hosts with variability only in non-specific defense, other studies find only specific defense. I analyse a model with combined specific and non-specific defense to determine the conditions that favor detectable variation in each form of defense. High variation in non-specific defense is often maintained when resistance increases in an accelerating way with investment, whereas low variation tends to occur when resistance increases at a decelerating rate with investment. Variation in specific defense rises as the parasite pays a higher cost to attack a broad host range (high cost of virulence), as the number of alternative specificities declines, and as the average level of non-specific defense increases. The last condition occurs because greater non-specific protection tends to stabilize the gene frequency dynamics of specific defense. Selection favors a negative association between costly components of specific and non-specific defense-hosts defended by one component are favored if they have reduced allocation to other costly components. A negative association confounds the measurement of costs of resistance. Individuals with specific defense may have reduced investment in costly non-specific defense. This leads to an apparent advantage of specifically defended hosts in the absence of parasites and a measured cost of resistance that is negative.  相似文献   

6.
虫害诱导植物防御的分子机理研究进展   总被引:8,自引:0,他引:8  
从虫害诱导的系统损伤信号、昆虫特异性激发子、间接防御、直接防御和负防御等方面,综述了虫害诱导植物防御的最新研究进展.在植物与昆虫的相互进化过程中,植物利用诱导防御物质对付昆虫的危害,昆虫则利用其特有的激发子降低植物的防御反应.文中比较了间接防御涉及的4种代谢途径,以及诱导挥发物释放的机制;阐明了虫害诱导植物直接防御的概念、防御物质及其作用机理;分析了虫害诱导植物负防御的机制.同时,也强调了虫害诱导林木防御反应的分子机理.  相似文献   

7.
外源茉莉酸和茉莉酸甲酯诱导植物抗虫作用及其机理   总被引:29,自引:4,他引:25  
综述了茉莉酸(jasmonic acid, JA)和茉莉酸甲酯(methyl jasmo nate, MJA)的分子结构和应用其诱导的植物抗虫作用及其机制。植物受外源茉莉酸或茉莉酸甲酯刺激后,一条反应途径是由硬脂酸途径激活防御基因,另一条途径是直接激活防御基因。防御基因激活后导致代谢途径重新配置,并可能诱导植物产生下列4种效应:(1)直接防御,即植物产生对害虫有毒的物质、抗营养和抗消化的酶类,或具驱避性和妨碍行为作用的化合物;(2)间接防御,即产生吸引天敌的挥发物;(3)不防御,即无防御反应;(4)负防御,即产生吸引害虫的挥发物。  相似文献   

8.
The competition–defense tradeoff is a significant source of functional diversity in ecological communities. Here, we present a theoretical framework to describe the competition–defense tradeoff and apply it to a size‐based model of a unicellular plankton community. Specifically, we investigate how the emergent community structure depends on the shape of the tradeoff, and on whether the cost of defense is paid for by a lowered resource affinity or by an elevated metabolic rate. The inclusion of defense affects the size distribution and trophic strategies of the emerging community dependent on environmental conditions (eutrophic versus oligotrophic) and leads to increased diversity in size and trophic strategy under eutrophic conditions. Eutrophic conditions allow for better‐defended organisms than oligotrophic conditions. In most scenarios, competition–defense tradeoffs dampen trophic cascades in the seasonal cycle simulations, and increase the abundance of mixotrophs. We further demonstrate that it matters how the cost of defense is manifest (decreased affinity versus increased metabolic rate), and that it has a significant effect on the resulting plankton community (overall biomass, size and feeding strategy diversity), particularly when the efficiency of the defense increases in direct proportion to the investment. Our results demonstrate that the structure of the ecosystem crucially depends on details of the defense tradeoff. This finding highlights the importance of a mechanistic understanding of defense tradeoffs, e.g. obtained through experimental measurements of specific defense mechanisms.  相似文献   

9.
Plant defense metabolites are well known to be regulated developmentally. The optimal defense (OD) theory posits that a tssue's fitness values and probability of attack should determine defense metabolite allocations. Young leaves are expected to provide a larger fitness value to the plant, and therefore their defense allocations should be higher when compared with older leaves. The mechanisms that coordinate development with defense remain unknown and frequently confound tests of the OD theory predictions. Here we demonstrate that cytokinins (CKs) modulate ontogeny‐dependent defenses in Nicotiana attenuata. We found that leaf CK levels highly correlate with inducible defense expressions with high levels in young and low levels in older leaves. We genetically manipulated the developmental patterns of two different CK classes by using senescence‐ and chemically inducible expression of CK biosynthesis genes. Genetically modifying the levels of different CKs in leaves was sufficient to alter ontogenic patterns of defense metabolites. We conclude that the developmental regulation of growth hormones that include CKs plays central roles in connecting development with defense and therefore in establishing optimal patterns of defense allocation in plants.  相似文献   

10.
郭祖国  王梦馨  崔林  韩宝瑜 《生态学杂志》2018,29(12):4248-4258
植物防御体系应对虫害胁迫产生一系列防御性生理生化反应,其中防御酶活性呈现显著变化.本文综述了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、多酚氧化酶(PPO)、脂氧合酶(LOX)和苯丙氨酸解氨酶(PAL) 6种常见防御酶应对虫害胁迫的机制,解析了6种防御酶的作用机理及其异同.梳理了6种防御酶应对虫害胁迫而相互协调的程序,总结了植物体遭虫害胁迫之后防御酶活性的变化及其与防御酶基因的关联,提出了植物体防御酶机制研究中的重要问题并展望前景.  相似文献   

11.
Sponges have evolved a variety of chemical and structural defense mechanisms to avoid predation. While chemical defense is well established in sponges, studies on structural defense are rare and with ambiguous results. We used field and laboratory experiments to investigate predation patterns and the anti-predatory defense mechanisms of the sponge Melophlus sarasinorum, a common inhabitant of Indo-pacific coral reefs. Specifically, we aimed to investigate whether M. sarasinorum is chemically or structurally defended against predation and if the defenses are expressed differently in the ectosomal and choanosomal tissue of the sponge. Chemical defense was measured as feeding deterrence, structural defense as feeding deterrence and toughness. Our results demonstrated that chemical defense is evenly distributed throughout the sponge and works in conjunction with a structurally defended ectosome to further reduce predation levels. The choanosome of the sponge contained higher protein levels, but revealed no structural defense. We conclude that the equal distribution of chemical defenses throughout M. sarasinorum is in accordance with Optimal Defense Theory (ODT) in regards to fish predation, while structural defense supports ODT by being restricted to the surface layer which experiences the highest predation risks from mesograzers.  相似文献   

12.
13.
We examined the interspecific variations in intensity of total abiotic (chemical and physical) defenses in five sympatric Macaranga (Euphorbiaceae) species, including three myrmecophytic species. The intensity of the total abiotic defense for each Macaranga species was estimated by measuring inhibiting effects on the growth performance of the common cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) when the cutworm larvae were fed fresh leaves of each Macaranga species. Indices of the growth performance, number of dead larvae, pupal weight and length of larval period were obtained. We found that the intensities of total abiotic defense of the two non-myrmecophytic species were significantly stronger than those of the three myrmecophytic species, and that there was a significant difference in intensity even within the three myrmecophytic species. The former result supports the hypothesis that, unlike non-myrmecophytic species, myrmecophytic species cannot invest so many metabolic resources in abiotic defense, because they have to allocate nutrients to biotic defense (toward biotic defense agents). Moreover, the latter result suggests the possibility that the three sympatric myrmecophytes have different defense strategies, with a trade-off between abiotic and biotic defense, and/or with a trade-off between defense and other life-history traits such as growth and reproduction. Abiotic defense can be roughly separated into physical and chemical mechanisms. To assess the intensity of the physical defense of Macaranga leaves, we measured the leaf toughness of each species. In addition, to assess the intensity of the plants general chemical defense, cutworm larvae were reared on an artificial diet containing dry leaf powder of each Macaranga species, and their growth performances were compared. The estimated orders of intensity of both leaf toughness and general chemical defense coincided with that of the total abiotic factors measured by the growth performance of cutworm on fresh leaves. This suggests the presence of both physical defenses, represented by leaf toughness, and a general chemical defense affecting the intensity of the total abiotic defense in similar ways.  相似文献   

14.
The classical “low latitude–high defense” hypothesis is seldom supported by empirical evidence. In this context, we tested latitudinal patterns in the leaf defense traits of deciduous broadleaved (DB) and evergreen broadleaved (EGB) tree species, which are expected to affect herbivore diversity. We examined the co-occurrence of leaf defense traits (tannin and phenol content, leaf mechanical strength, leaf dry matter content, leaf mass per area, and leaf thickness) in 741 broadleaved tree species and their correlations with species geographical range in East Asian island flora. We discovered contrasting latitudinal defense strategy gradients in DB and EGB tree species. DB species employed chemical defenses (increasing tannin and phenol content) at higher latitudes and physical defenses (softer and thinner leaves) at lower latitudes, whereas EGB tree species exhibited opposite latitudinal defense patterns. The “low latitude high defense” hypothesis included a paradoxical aspect in chemical and physical defense traits across broadleaved tree species. To reconcile paradoxical defense strategies along the latitudinal gradient, we conclude that interactive correlations among leaf traits are controlled by leaf longevity, which differs between DB and EGB tree species.  相似文献   

15.
Studies of avian nest defense generally explain only a small proportion of the total variation in defense behavior. We explored two potential methodological sources of variation in nest defense in three species of ducks. One common method of quantifying nest defense rests on the assumption that different components of nest defense (e.g. flushing distance, distraction displays) are highly positively correlated. Defense behaviors we observed in this study were weakly related or unrelated to each other. Thus, the assumption of strong positive covariance between components of nest defense was not supported. We also considered the effect of repeated visits to the same nests on nest defense. Females of all three species took less risk defending their nests with repeated visits, and the effect of visit number on nest defense was greater than the effect of increasing value of nests associated with advancing incubation. Ducks appear to be different from other birds in the consistency with which they alter their nest defense in response to repeated nest visits. We propose that this could be a consequence of having nest predators that return to the vicinity of a nest if they were previously unsuccessful finding the nest, thus making repeated nest visits more dangerous to the ducks. By testing this or other hypotheses it should be possible to go beyond understanding the methodological implications of the effect of repeated visits on nest defense, and use this phenomenon to gain insight into the predator-prey interactions that underlie nest defense.  相似文献   

16.
Plants defend themselves against herbivores not only by a single trait but also by diversified multiple defense strategies. It remains unclear how these multiple defense mechanisms are effectively organized against herbivores. In this study, we focused on Brassicaceae plants, which have one of the most diversified secondary metabolites, glucosinolates (GSLs), as a defense against herbivores. By analyzing various defense traits including GSL profiles among 12 species (11 genera) of Brassicaceae plants, it is revealed that their defense strategies can be divided into three categories as multiple defenses. The GSL profiles differed between these three categories: (i) high nutritional level with long‐chain aliphatic GSLs; (ii) low nutritional level and high physical defenses with short‐chain aliphatic GSLs; and (iii) high nutritional level and low defense. The feeding experiment was conducted using two types of herbivores, Pieris rapae (Lepidoptera: Pieridae) as a specialist herbivore and the Eri silkmoth Samia cynthia ricini (Lepidoptera: Saturniidae) as a generalist, to assess the ability of each plant in multiple defense strategy. It was observed that the Eri silkmoth's performance differed according to which defense strategy it was exposed to. However, the growth rate of P. rapae did not vary among the three categories of defense strategy. These results suggest that the diversified defense strategies of Brassicaceae species have evolved to cope with diversified herbivores.  相似文献   

17.
The persistence of intraguild predation (IGP), the prey–predator interaction between competing species, is puzzling because simple IGP models readily predict species extinction. In this study, we explored a mathematical model incorporating predator‐specific defense adaptation of basal prey against intraguild prey and intraguild predator. The model explicitly described the dynamics of the defense effort against each predator under the assumption that anti‐predator defense was associated with reducing effort allocated to reproduction. The model predicted that defense adaptation (i.e. the ability to reallocate defense effort) would facilitate coexistence, particularly when system productivity is high; at low productivity, coexistence would be facilitated or inhibited depending on initial effort allocation prior to defense adaptation. In addition, we found that three‐species dynamics became more stable at higher adaptation rates. The results suggest that common behavioral changes, such as predator‐specific defense adaptation, have significant implications for the community structure and dynamics of IGP systems.  相似文献   

18.
Reproductive-effort theory predicts that parents of any given age should expend more parental effort (1) as their residual reproductive value declines, and (2) as the reproductive value of offspring increases. An observational and experimental study of nest defense by captive red jungle fowl hens was used to examine these two predictions. Both young and old individuals significantly increased defense of the second nest compared to the first nest within a season; this pattern occurred for the defense of both eggs and chicks. Old hens showed significantly greater defense of both eggs and chicks in each of the nests than did young hens. Both young and old hens were significantly more defensive of chicks than eggs in each of two clutches of a season. Hens also reduced their nest defense significantly at the end of a two to three-day period after their chicks were replaced with eggs, and increased their nest defense after eggs were exchanged for chicks. Hens given four chicks showed more vigorous defense than hens given two chicks. When the brood size of hens with four chicks was reduced to one chick, the hens responded by exhibiting less vigorous nest defense. These patterns of nest defense in jungle fowl were not confounded by parental experience of hens, or differences in offspring quality that are related to time of breeding, maternal age, sire genetic quality or vulnerability of offspring to weather.  相似文献   

19.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   

20.
万超  彭练慈  叶超 《微生物学报》2023,63(4):1305-1317
宿主防御肽是一类广泛存在于脊椎动物的小分子多肽,具有广谱的抗菌活性以及抗炎、细胞趋化、促进血管生成和修复损伤等免疫调节功能。以往的研究多集中在宿主防御肽抗细菌和真菌感染的研究上。近年来大量研究发现,宿主防御肽也具有广泛的抗病毒活性,在临床各类病毒病的预防和治疗上具有潜在的应用前景。本文围绕宿主防御肽直接杀伤病毒、调节病毒感染过程和参与宿主抗病毒天然免疫调节这3个方面的作用机制进行综述,为宿主防御肽抗病毒相关研究和相关抗病毒生物药物的研发提供参考和借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号