首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety were designed, synthesized and evaluated for their in vitro antitumor activities against SMMC-7721, MCF-7 and A549 human tumor cell lines by CCK-8 assay. The bioassay results demonstrated that most of the tested compounds showed potent antitumor activities, and some compounds exhibited stronger effects than positive control 5-fluorouracil (5-FU) against various cell lines. Among these compounds, compound 8d showed the best inhibitory effect against SMMC-7721 cells, with IC50 value of 2.84 μM. Compounds 8k and 8n displayed highly effective antitumor activities against MCF-7 cells, with IC50 values of 4.56 and 4.25 μM, respectively. Compounds 8a and 8n exhibited significant antiproliferative activity against A549 cells, with IC50 values of 4.11 and 4.13 μM, respectively. The pharmacological results suggest that the substituents of phenyl ring on the 1,3,4-oxadiazole are vital for modulating antiproliferative activities against various tumor cell lines.  相似文献   

2.
1,3,4-Oxadiazole derivatives have drawn continuing interest over the years because of their varied biological activities. In order to search for novel anticancer agents, we designed and synthesized a series of new 1,3,4-oxadiazole derivatives containing benzotriazole moiety as potential focal adhesion kinase (FAK) inhibitors. All the synthesized compounds were firstly reported. Among the compounds, compound 4 shows the most potent inhibitory activity against MCF-7 and HT29 cell lines with IC50 values of 5.68 μg/ml and 10.21 μg/ml, respectively. Besides, all the compounds were assayed for FAK inhibitory activity using the TRAP–PCR–ELISA assay. The results showed compound 4 exhibited the most potent FAK inhibitory activity with IC50 values of 1.2 ± 0.3 μM. Docking simulation by positioning compound 4 into the FAK structure active site was performed to explore the possible binding mode. Apoptosis which was analyzed by flow cytometry, demonstrated that compound 4 induced apoptosis against MCF-7 cells. Therefore, compound 4 may be a potential anticancer agent against MCF-7 cancer cell.  相似文献   

3.
1-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-4-substituted-phenylpiperazine moiety was prepared and has been found to be a new and selective ligand for the enzyme cyclooxygenase-2 (COX-2). The biological activity of compound 3k as anti-inflammatory agent was further investigated both in vitro and in vivo. Notably, compound 3k exhibited the best anti-inflammatory activity among the eleven designed compounds with no toxicity, as determined by the ulcerogenic activity. Computational docking studies also showed that compound 3k has interaction with COX-2 key residues in the active site. Compound 3k maybe a new anti-inflammatory lead-candidate as powerful and novel non-ulcerogenic.  相似文献   

4.
A series of 1,3,4-oxadiazole derivatives containing 1,4-benzodioxan moiety (7a7q) have been designed, synthesized and evaluated for their antitumor activity. Most of the synthesized compounds were proved to have potent antitumor activity and low toxicity. Among them, compound 7a showed the most potent biological activity against Human Umbilical Vein Endothelial cells, which was comparable to the positive control. The results of apoptosis and flow cytometry (FCM) demonstrated that compound 7a induce cell apoptosis by the inhibition of MetAP2 pathway. Molecular docking was performed to position compound 7a into MetAP2 binding site in order to explore the potential target.  相似文献   

5.
A series of thieno[2,3-d]pyrimidine alkyne Mannich base derivatives (7a-e, 8a-e) and thieno[2,3-d]pyrimidine 1,3,4-oxadiazole derivatives (9a-e, 10a-e) have been synthesized and evaluated for their neuroprotective and neurotoxicity activities where 9a, 10d displayed good neuroprotection 10.6 and 11.88?µg/mL respectively against the H2O2 induced cell death at the EC50 values and 9b, 9d showed respective toxic effects on PC12 cells at CC50 86.12 and 94.16?µg/mL. Compounds 9a, 9e, 10a and 10b showed strong antibacterial activity against two gram positive (S. aureus, B. subtilis) and two gram-negative strains (E. coli, P. aeruginosa) and showed good binding affinities with C(30) carotenoid dehydrosqualene synthase, Gyrase A and LpxC. This is the first report for the demonstration of thieno[2,3-d] pyrimidine derivatives as promising neuroprotective agents against H2O2 induced neurotoxicity on PC12 cells.  相似文献   

6.
Twenty benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety were synthesized and evaluated for their anti-oxidant and anti-inflammatory activities. Among these compounds, 8h and 8l were appeared to have high radical scavenging efficacies as 0.05 ± 0.02 and 0.07 ± 0.03 mmol/L of IC50 values in ABTS+ bioassay, respectively. In anti-inflammatory tests, compound 8h displayed good activity with 57.35% inhibition after intraperitoneal administration, which was more potent than the reference drug (indomethacin). Molecular modeling studies were performed to investigate the binding mode of the representative compound 8h into COX-2 enzyme. In vitro enzyme study implied that compound 8h exerted its anti-inflammatory activity through COX-2 inhibition.  相似文献   

7.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

8.
A novel series of flavokawain B derivatives, chalcone Mannich bases (410) were designed, synthesized, characterized, and evaluated for the inhibition activity against acetylcholinesterase (AChE). Biological results revealed that four compounds displayed potent activities against AChE with IC50 values below 20 μM. Moreover, the most promising compound 8 was 2-fold more active than rivastigmine, a well-known AChE inhibitor. The log P values of 410 were around 2 which indicated that they were sufficiently lipophilic to pass blood brain barriers in vivo. Enzyme kinetic study suggested that the inhibition mechanism of compound 8 was a mixed-type inhibition. Meanwhile, the molecular docking showed that this compound can both bind with the catalytic site and the periphery of AChE.  相似文献   

9.
Novel hybrids bearing a 2-aminopyrimidine (2-AP) moiety linked to substituted 1,3,4-oxadiazoles were designed, synthesized and biologically evaluated. Among the developed compounds, 28 noncompetitively inhibited human acetylcholinesterase (hAChE; pIC50?=?6.52; Ki?=?0.17?µM) and showed potential in vitro antioxidant activity (60.0%) when evaluated using the Ellman’s and DPPH assays, respectively. Compound 28 competitively displaced propidium iodide (PI) from the peripheral anionic site (PAS) of hAChE (17.6%) and showed high blood-brain barrier (BBB) permeability, as observed in the PAMPA-BBB assay. Additionally, compound 28 inhibited hAChE-induced Aβ aggregation in a concentration-dependent manner according to the thioflavin T assay and was devoid of neurotoxic liability towards SH-SY5Y cell lines, as demonstrated by the MTT assay. The behavioral studies of compound 28 in mice showed a significant reversal of scopolamine-induced amnesia, as observed in Y-maze and passive avoidance tests. Furthermore, compound 28 exhibited significant AChE inhibition in the brain in ex vivo studies. An evaluation of oxidative stress biomarkers revealed the antioxidant potential of 28. Moreover, in silico molecular docking and dynamics simulation studies were used as a computational tool to evaluate the interactions of compound 28 with the active site residues of hAChE.  相似文献   

10.
In present study, a series of new 1,3,4-oxadiazole derivatives containing 1,4-benzodioxan moiety (6a-6s) as potential telomerase inhibitors were synthesized. The bioassay tests demonstrated that compounds 6k, 6l, 6m, 6n and 6s exhibited broad-spectrum antitumor activity with IC(50) concentration range from 7.21 μM to 25.87 μM against the four cancer cell lines, HEPG2, HELA, SW1116 and BGC823. Moreover, all the title compounds were assayed for telomerase inhibition using the TRAP-PCR-ELISA assay. The results showed compound 6k possessed the most potent telomerase activity (IC(50)=1.27 ± 0.05 μM). Docking simulation was performed to position compound 6k into the active site of telomerase (3DU6) to determine the probable binding model.  相似文献   

11.
A novel approach to synthesize glucose-based 3-acetyl-5-alkyl-2,3-dihydro-1,3,4-oxadiazoles with the assistance of microwave irradiation was developed. The effects of different catalysts on the heterocyclization process were investigated, and the reaction conditions were optimized, with NaOAc emerging as the catalyst of choice. Under the optimized conditions, a series of novel 3-acetyl-5-alkyl-2,3-dihydro-1,3,4-oxadiazole derivatives 4 and 5 were successfully synthesized from hydrazones 2 and 3. The absolute configurations of hydrazones 2, 3 and oxadiazoles 4, 5 were confirmed by NMR spectroscopic data. The ratio of the isomers 4 and 5 was 1:1.  相似文献   

12.
In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a–r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a–r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ± 1.68, 40.1 ± 1.0 and 19.0 ± 1.47 μg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ± 2.72, 66.8 ± 2.05 and 73.1 ± 1.69 μg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.  相似文献   

13.
The novel hybrids bearing 4-aminopyridine (4-AP) tethered with substituted 1,3,4-oxadiazole nucleus were designed, synthesized, and evaluated for their potential AChE inhibitory property along with significant antioxidant potential. The inhibitory potential (IC50) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman’s method. Among all the compounds, 9 with 4-hydroxyl substituent showed maximum hAChE inhibition with the non-competitive type of enzyme inhibition (IC50 = 1.098 µM; Ki = 0.960 µM). Further, parallel artificial membrane permeation assay (PAMPA-BBB) showed significant BBB permeability in most of the synthesized compounds. Meanwhile, compound 9 also inhibited AChE-induced Aβ aggregation (38.2–65.9%) by thioflavin T assay. The in vivo behavioral studies showed dose-dependent improvement in learning and memory by compound 9. The ex vivo studies also affirmed the significant AChE inhibition and antioxidant potential of compound 9 in brain homogenates.  相似文献   

14.
A series of new 1,3,4-oxadiazole/oxime hybrids were synthesized and designed as potent COX inhibitors. The prepared compounds were evaluated for their anti-inflammatory, antioxidant and ulcerogenic activities. The results indicated that the prepared compounds exhibited remarkable anti-inflammatory activity with (69.60–109.60% of indomethacin activity) after 4 h. In vitro COX inhibitory assay showed that compounds 6d and 7h are potent COX inhibitors with IC50 of (1.10–0.94) and (2.30–5.00) µM on both COX-1 and COX-2 respectively. Compound 7h was found to inhibit both COXs non-competitively with Ki values of 73 µM and 89 µM. Most of the tested compounds showed ulcer-free stomachs compared to indomethacin.  相似文献   

15.
A series of novel 1,3,4-oxadiazole/thiadiazole–chalcone conjugates were synthesized and their in vitro and in vivo antiviral activities were evaluated via microscale thermophoresis method and half-leaf method, respectively. The in vitro results indicated that compounds 7g, 7l, 8h, and 8l displayed good antiviral activity against TMV, with the binding constant values of 5.93, 6.15, 6.02, and 5.04 μM, respectively, which were comparable to that of Ninnanmycin (6.78 μM) and even better than that of Ribavirin (99.25 μM). The in vivo results demonstrated that compounds 7g, 7l, 8h, and 8l exhibited remarkable anti-TMV activity with the EC50 values of 33.66, 33.97, 33.87 and 30.57 µg/mL, respectively, which were comparable to that of Ningnanmycin (36.85 µg/mL) and superior to that of Ribavirin (88.52 µg/mL). Interestingly, the trend of antiviral activity in vivo was consistent with the in vitro results.  相似文献   

16.
Two 2-amino-1,3,4-thiadiazoles containing phenolic hydroxyl groups were combined with different carboxylic acid chlorides giving sixteen amide derivatives with good antioxidant and antiproliferative potential. The compound 3′c with an adamantane ring displayed excellent DPPH radical scavenging activity and good cytotoxic activity against human acute promyelocytic leukemia HL-60 cells, while 1,3,4-thiadiazole 3′h with 4-chlorophenyl moiety was found to be the most effective in inhibition of survival of lung carcinoma A549 cells. All examined thiadiazoles except 3a and 3′a exerted higher cytotoxic activities on A549 and HL-60 cancer cells when compared with normal fibroblasts MRC-5, pointing to selectivity in their antiproliferative action. Some of the most active novel compounds 3c, 3′c, 3′g and 3′h induced significant increase in the percentage of HL-60 cells in the subG1 cell cycle phase in comparison with the control cells. The induction of cell death in HL-60 cells by these compounds was at least partially dependent on activation of caspase-3 and caspase-8. The compounds 3c and 3′c exerted strong antiangiogenic activity. Furthermore, compounds 3c, 3′c, 3′g and 3′h showed the ability to down-regulate the MMP2 and VEGFA expression levels in the treated HL-60 cells when compared with the control cell samples.  相似文献   

17.
A series of novel 2,3-dihydro-1,3,4-oxadiazoles containing N-pyridylpyrazole carboxamides moieties were obtained by applying a new synthetic route. Their insecticidal tests against oriental armyworm (Mythimna separata) and diamondback moth (Plutella xylostella) indicated that most of the compounds showed moderate to excellent activities at the testing concentrations. In particular, compound 6a showed 40% larvicidal activities against oriental armyworm at 1 mg/L, while 7a against diamondback was 100% at 0.01 mg/L. Calcium imaging results demonstrated that 6a, 6d and 7a stimulated a transient elevation in [Ca2+]i in the absence of external calcium after the central neurons dye loading with fluo-3 AM, implying that these novel compounds were potential activators of the ligand-gated calcium channel on the endoplasmic reticulum.  相似文献   

18.
A mini-library of diversely substituted 2,4-diaryl-3-azabicyco[3.3.1]nonan-9-one O-methyloximes and their N-methyl analogs were synthesized by a non-laborious, modified and an optimized Mannich condensation in good yields. Both the ring N-methylation and oxime O-methylation were employed by various methods; of them, the usage of tBuOK was found to be the superior in terms of good yield in short time. Stereochemistry of all the synthesized compounds was unambiguously established by their NMR spectral (1H, 13C, 1H-1H COSY, 1H-13C one and multiple bond COSY and NOESY) as well as single-crystal XRD studies. Irrespective of the nature and position of the substituents, all the synthesized oxime ethers of the bicyclic Mannich bases as well as their N-methyl analogs adopted the twin-chair conformation with equatorial orientations of all the substituents. All the synthesized oxime ethers were evaluated for their antioxidant property by DPPH radical scavenging method. According to the structure-activity correlations, compound 4y was found to be a lead molecule with the IC50 of 0.187 mg/mL. Thus, the present study exploits the scope of finding more active analogs by further optimization with the incorporation of more electron enriched alkoxy/amino and/or phenolic groups on the heterocycle as well as oxime ether pharmacophore. Most of the synthesized molecules were screened for their antituberculostic potency against Mycobacterium tuberculosis H37Rv by zone of inhibition method. Of them, 4w/5d and 4x showed very promising inhibition zones of 21 and 23 mm, respectively, which leads to the optimization of 4x by introducing various substituents on the O-benzyl moiety to enhance the antituberculostic potency.  相似文献   

19.
Abstract

This study presents the synthesis, antiproliferative and antimicrobial evaluation of a new series of Mannich base derivatives containing 1,2,4-triazole system. New compounds were prepared by the reaction of 4,5-disubstituted 1,2,4-triazole-3-thiones with formaldehyde and various amines. The structures of the prepared compounds were confirmed by means of 1H NMR, 13C NMR and elemental analyses. Twelve compounds were evaluated for their in vitro antiproliferative activities against six chosen cancer cell lines. All synthesized compounds were screened for their in vitro antimicrobial activity by using the agar dilution technique. For 17 potentially active compounds, their antibacterial activity was confirmed on the basis of MIC (minimal inhibitory concentration) by broth microdilution method using the reference Gram-positive and Gram-negative bacterial strains.  相似文献   

20.
Synthesis of a series of novel N-acylhydrazones of nicotinic acid hydrazides 3aj via condensation of nicotinic acid hydrazide 1 with the corresponding aldehydes and ketones is described. The series 3a–j was evaluated for in vitro antibacterial activity against two gram negative (Pseudomonas aeruginosa and Klebsiella pneumoniae) and two gram positive (Streptococcus pneumoniae and Staphylococcus aureus) bacteria. The zone of inhibition was measured using the disk diffusion method, and in vitro minimum inhibitory concentration indicating that compounds 3a and 3e were effective against P. aeruginosa with MICs of 0.220 and 0.195 μg respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号