首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
富含鸟嘌呤的单链DNA序列可以缠绕折叠形成G- 四链体结构。人类基因组中有36,000 个以上的DNA 序列有潜力生成 G-四链体,如端粒末端重复序列,以及c-myc、c-kit、bcl-2 等原癌基因启动子区域。G-四链体是由四个鸟嘌呤之间通过Hoogsteen 氢键形成G-四分体,相邻的G-四分体再通过π-π 堆积作用,由糖- 磷酸骨架相连而成。G- 四链体DNA 的形成有着重要的生 物学意义,它和相关基因表达水平密切相关,诱导和稳定G- 四链体结构就有可能抑制癌基因的转录和表达,引起肿瘤细胞生物 学功能的紊乱,从而抑制肿瘤细胞的增殖。G-四链体结构作为新的抗肿瘤药物靶点引起了科学家的广泛关注,能够稳定G- 四链 体结构的配体包括二酰胺蒽醌类、苝类、阳离子卟啉类、金属配合物和天然产物等。本文对近年来以G-四链体为靶点的配体的研 究进行了综述。  相似文献   

2.
富含鸟嘌呤的单链DNA序列可以缠绕折叠形成G-四链体结构。人类基因组中有36,000个以上的DNA序列有潜力生成G-四链体,如端粒末端重复序列,以及c-myc、c-kit、bcl-2等原癌基因启动子区域。G-四链体是由四个鸟嘌呤之间通过Hoogsteen氢键形成G-四分体,相邻的G-四分体再通过π-π堆积作用,由糖-磷酸骨架相连而成。G-四链体DNA的形成有着重要的生物学意义,它和相关基因表达水平密切相关,诱导和稳定G-四链体结构就有可能抑制癌基因的转录和表达,引起肿瘤细胞生物学功能的紊乱,从而抑制肿瘤细胞的增殖。G-四链体结构作为新的抗肿瘤药物靶点引起了科学家的广泛关注,能够稳定G-四链体结构的配体包括二酰胺蒽醌类、苝类、阳离子卟啉类、金属配合物和天然产物等。本文对近年来以G-四链体为靶点的配体的研究进行了综述。  相似文献   

3.
Human DNA sequences consisting of tandem guanine (G) nucleotides can fold into a four-stranded structure named G-quadruplex via Hoogsteen hydrogen bonding. As the sequences forming G-quadruplex exist in essential regions of eukaryotic chromosomes and are involved in many important biological processes, the study of their biological functions has currently become a hotspot. Compounds selectively binding and stabilizing G-quadruplex structures have the potential to inhibit telomerase activity or alter oncogene expression levels and thus may act as antitumor agents. Most of reported G-quadruplex ligands generally have planar structures which stabilize G-quadruplex by π–π stacking. However, based on a pharmacophore-based virtual screening two non-planar G-quadruplex ligands were found. These two ligands exhibit good capability for G-quadruplex stabilization and prefer binding to paralleled G-quadruplex rather than to duplex DNA. The binding of these ligands to G-quadruplex may result from groove binding at a 2:1 stoichiometry. These results have shown that planar structures are not essential for G-quadruplex stabilizers, which may represent a new class of G-quadruplex-targeted agents as potential antitumor drugs.  相似文献   

4.
The synthesis of 24-membered macrocycles containing four, six, and seven oxazole moieties is described. Selected compounds were evaluated for their ability to specifically bind and stabilize G-quadruplex DNA and for cytotoxic activity. An unexpected oxidative cleavage reaction afforded a macrocyclic imide that was also evaluated for G-quadruplex stabilizing and cytotoxic activity.  相似文献   

5.
A series of bisaryldiketene derivatives were designed and synthesized as a new class of specific G-quadruplex ligands. The ligand-quadruplex interactions were further evaluated by FRET, ITC, and PCR stop assay. In contrast to most of the G-quadruplex ligands reported so far, which comprise an extended aromatic ring, these compounds are neither polycyclic nor macrocyclic, but have a non-aromatic and relative flexible linker between two quinoline moieties enabling the conformation of compounds to be flexible. Our results showed that these bisaryldiketene derivatives could selectively recognize G-quadruplex DNA rather than binding to duplex DNA. Moreover, they showed promising discrimination between different G-quadruplex DNA. The primary binding affinity of ligand M2 for c-myc G-quadruplex DNA was over 200 times larger than that for telomere G-quadruplex DNA.  相似文献   

6.
Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA–RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA–RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA–RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA–RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA–RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.  相似文献   

7.
8.
The present study has employed a combination of spectroscopic, calorimetric and computational methods to explore the binding of the three side-chained triazatruxene derivative, termed azatrux, to a human telomeric G-quadruplex sequence, under conditions of molecular crowding. The binding of azatrux to the tetramolecular parallel [d(TGGGGT)]4 quadruplex in the presence and absence of crowding conditions, was also characterized. The data indicate that azatrux binds in an end-stacking mode to the parallel G-quadruplex scaffold and highlights the key structural elements involved in the binding. The selectivity of azatrux for the human telomeric G-quadruplex relative to another biologically relevant G-quadruplex (c-Kit87up) and to duplex DNA was also investigated under molecular crowding conditions, showing that azatrux has good selectivity for the human telomeric G-quadruplex over the other investigated DNA structures.  相似文献   

9.
The DNA G-quadruplex is an important higher-order structure formed from guanine-rich DNA sequences. There are many molecules which can stabilize this structure. However, the selectivity of these ligands to different G-quadruplexes was not satisfactory. Herein, we designed and synthesized a chemically modified G-quadruplex probe, Razo-DNA, for the unique stabilization of the G-quadruplex. Razo-DNA consists of two fragments: The first is an organic molecular moiety which can stabilize G-quadruplex structures, and the second is a DNA molecule that is complementary with a sequence adjacent to the guanine-rich sequence of targeted DNA. Further studies showed that Razo-DNA could precisely stabilize the targeted DNA G-quadruplex structures in vitro.  相似文献   

10.
Telomerase is responsible for the immortal phenotype of cancer cells and telomerase inhibition may specifically target cancer cell proliferation. Ligands able to selectively bind to G-quadruplex telomeric DNA have been considered as telomerase inhibitors but their mechanisms of action have often been deduced from a non-quantitative telomerase activity assay (TRAP assay) that involves a PCR step and that does not provide insight on the mechanism of inhibition. Furthermore, quadruplex ligands have also been shown to exert their effects by affecting association of telomere binding proteins with telomeres. Here, we use quantitative direct telomerase activity assays to evaluate the strength and mechanism of action of hydrosoluble perylene diimides (HPDIs). HPDIs contain a perylene moiety and different numbers of positively charged side chains. Side chain features vary with regard to number and distances of the charges. IC50 values of HPDIs were in the low micromolar (0.5–5 μM) range depending on the number and features of the side chains. HPDIs having four side chains emerged as the best compounds of this series. Analysis of primer elongation products demonstrated that at low HPDI concentrations, telomerase inhibition involved formation of telomeric G-quadruplex structures, which inhibited further elongation by telomerase. At high HPDI concentrations, telomerase inhibition occurred independently of G-quadruplex formation of the substrate. The mechanism of action of HPDIs and their specific binding to G-quadruplex DNA was supported by PAGE analysis, CD spectroscopy and ESI-MS. Finally, competition Telospot experiments with duplex DNA indicated specific binding of HPDIs to the single-stranded telomeric substrates over double stranded DNA, a result supported by competitive ESI-MS. Altogether, our results indicate that HPDIs act by stabilizing G-quadruplex structures in single-stranded telomeric DNA, which in turn prevents repeat addition processivity of telomerase.  相似文献   

11.
Telomeric repeat-containing RNA, a non-coding RNA molecule, has recently been found in mammalian cells. The detailed structural features and functions of the telomeric RNA at human chromosome ends remain unclear, although this RNA molecule may be a key component of the telomere machinery. In this study, using model human telomeric DNA and RNA sequences, we demonstrated that human telomeric RNA and DNA oligonucleotides form a DNA-RNA G-quadruplex. We next employed chemistry-based oligonucleotide probes to mimic the naturally formed telomeric DNA-RNA G-quadruplexes in living cells, suggesting that the process of DNA-RNA G-quadruplex formation with oligonucleotide models of telomeric DNA and RNA could occur in cells. Furthermore, we investigated the possible roles of this DNA-RNA G-quadruplex. The formation of the DNA-RNA G-quadruplex causes a significant increase in the clonogenic capacity of cells and has an effect on inhibition of cellular senescence. Here, we have used a model system to provide evidence about the formation of G-quadruplex structures involving telomeric DNA and RNA sequences that have the potential to provide a protective capping structure for telomere ends.  相似文献   

12.
核酸的G-四链体结构在原核生物和真核生物的基因组中广泛存在,并参与基因复制和重组、端粒延伸、基因表达调控等多种重要的生物学过程.G-四链体与配体如Telomestatin、TMPy P4、BRACO-19、RHPS4等的相互作用研究有助于阐明其生物学功能.G-四链体与配体分子间的相互作用研究应用多种分析方法,如硫酸二甲酯印迹、凝胶迁移、聚合酶终止实验等生物化学法,而现代分析技术包含圆二色谱、荧光光谱、荧光共振能量转移、核磁共振、X-射线晶体衍射等光谱法,以及表面等离子体共振、电喷雾质谱和毛细管电泳法等.本文综述了可与G-四链体结合的配体以及G-四链体与配体相互作用的研究方法,并对各种方法进行了比较.  相似文献   

13.
Discovery of potent and selective ligands for telomeric G-quadruplex DNA is a challenging work. Through a combination approach of pharmacophore model construction, model validation, database virtual screening, chemical synthesis and interaction evaluation, we discovered and confirmed triaryl-substituted imidazole TSIZ01 to be a new telomeric G-quadruplex ligand with potent binding and stabilizing activity to G-quadruplex DNA, as well as a 8.7-fold selectivity towards telomeric G-quadruplex DNA over duplex DNA.  相似文献   

14.
Oxazole-containing macrocycles, which include the natural product telomestatin, represent a promising class of anticancer agents that target G-quadruplex DNA. Two synthetic hexaoxazole-containing macrocyclic compounds (HXDV and HXLV-AC) have been characterized with regard to their cytotoxic activities versus human cancer cells, as well as the mode, thermodynamics, and specificity with which they bind to the intramolecular (3+1) G-quadruplex structural motif formed in the presence of K(+) ions by human telomeric DNA. Both compounds exhibit cytotoxic activities versus human lymphoblast (RPMI 8402) and oral carcinoma (KB3-1) cells, with associated IC(50) values ranging from 0.4 to 0.9muM. The compounds bind solely to the quadruplex nucleic acid form, but not to the duplex or triplex form. Binding to the quadruplex is associated with a stoichiometry of two ligand molecules per DNA molecule, with one ligand molecule binding to each end of the host quadruplex via a nonintercalative "terminal capping" mode of interaction. For both compounds, quadruplex binding is primarily entropy driven, while also being associated with a negative change in heat capacity. These thermodynamic properties reflect contributions from favorable ligand-induced alterations in the loop configurational entropies of the quadruplex, but not from changes in net hydration. The stoichiometry and mode of binding revealed by our studies have profound implications with regard to the number of ligand molecules that can potentially bind the 3-overhang region of human telomeric DNA.  相似文献   

15.
DNA G-quadruplex is an attractive drug target for anticancer therapy. Most G-quadruplex ligands have little selectivity, due to π-stacking interaction with common G-tetrads surface. Thanks to the varieties of G-quadruplex grooves, the groove-binding ligand is expected to create high selectivity. Therefore, developing novel molecular geometries that target G-quadruplex groove has been paid growing attention. In this work, steroid FG, a special nonplanar and nonaromatic small molecule, interacting with different conformations of G-quadruplexes has been studied by molecular docking and molecular dynamics simulations. The results showed the selectivity of the hydrophobic group of steroid FG for the wide groove of antiparallel G-quadruplex. The methyl groups on the tetracyclic ring of steroid represent the specific binding ability for the small hydrophobic cavity formed by reversed stacking of G-tetrads in antiparallel G-quadruplex groove. This work provides new insight for developing new classes of G-quadruplex groove-binding ligands.  相似文献   

16.
核酸在生命遗传过程中发挥着重要作用,其特殊的DNA二级结构不仅包含遗传信息,还可在体内发挥特定的生理功能、在体外被用作生物传感器的组成元件。目前,DNA特殊二级结构主要包括发卡(hairpin)、十字形(cruciform)、双螺旋(double helix)、三螺旋(triplex)、G-四联体(G-quadruplex)、G-三联体(G-triplex)和i-motif等。DNA特殊二级结构无论是在体外还是在体内均已被广泛研究,因此,基于已有的研究成果,概括总结了DNA特殊二级结构中G-quadruplex、G-triplex、i-motif的发展史、结构组成、特殊功能以及在生物传感、纳米材料、体内检测等方面的应用,最后剖析了目前在DNA特殊二级结构的研究中存在的问题与不足,并对其今后的研究方向做出了展望,以期为DNA特殊二级结构在生物传感、分子医学等领域的应用提供理论支持。  相似文献   

17.
We report in this article the interactions of five N-(1,10-phenanthrolin-5-yl)-β-glycopyranosylamine copper(II) complexes with G-quadruplex DNA. Specifically, the interactions of these compounds with a human telomeric oligonucleotide have been assessed by fluorescence-based assays (FRET melting and G4-FID), circular dichroism and competitive equilibrium dialysis experiments. The metal complexes bind and stabilize G-quadruplex DNA structures with apparent association constants in the order of 104–105 M−1 and the affinity observed is dependent on the ionic conditions utilized and the specific nature of the carbohydrate moiety tethered to the 1,10-phenanthroline system. The compounds showed only a slight preference to bind G-quadruplex DNA over duplex DNA when the quadruplex DNA was folded in sodium ionic conditions. However, the binding affinity and selectivity, although modest, were notably increased when the G-quadruplex DNA was folded in the presence of potassium metal ions. Moreover, the study points towards a significant contribution of groove and/or loop binding in the recognition mode of quadruplex structures by these non-classical quadruplex ligands. The results reported herein highlight the potential and the versatility of carbohydrate bis-phenanthroline metal-complex conjugates to recognize G-quadruplex DNA structures.  相似文献   

18.
Guanine-rich telomeric sequences fold into G-quadruplex conformation and are known to bind a variety of ligands including potential drug candidates. By means of CD spectroscopy and fluorescence lifetime measurements we demonstrate that putative anticancer therapeutic sanguinarine (SGR) exhibits two distinct interactions with human telomere d[(TTAGGG)4] (H24) in presence of K+. Up to about 1:2 M ratio of H24:SGR (10 μM H24), two molecules of SGR bind H24. Above this molar ratio, SGR induces a conformational transition in H24 from the K+-form to the Na+-form. The demonstration of SGR-induced conformational transition in a G-quadruplex formed by a human telomeric sequence could provide new insights into interaction of drugs with quadruplex DNA structure.  相似文献   

19.
《Autophagy》2013,9(8):1185-1196
G-quadruplex ligands have attracted considerable interest as novel anticancer therapeutics due to their capability to interfere with guanosine-rich DNA/RNA sequences, such as telomeres. Elucidation of the structures of telomeric G-quadruplexes has led, in the past few years, to the rational development of effective G-quadruplex-stabilizing small molecules. In the present study, we showed that short-term exposure of melanoma cells to Ant1,5—an anthracene-based ligand able to stabilize telomeric G-quadruplexes—impaired cell growth without inducing cell senescence or apoptosis. Conversely, drug-treated cells were characterized by the occurrence of typical biochemical and morphological features associated with autophagy, such as an increase in the lipidated form of the autophagic marker LC3B and the accumulation of autophagosomes. Such drug-induced autophagy occurred as a consequence of DNA damage induction, at least in part dependent on drug-mediated telomere uncapping, through a pathway converging on the cyclin-dependent kinase inhibitor 1A (CDKN1A/p21). Indeed, melanoma cells depleted for CDKN1A did not show evidence of autophagic markers upon exposure to Ant1,5. The inhibition of autophagy by a pharmacologic inhibitor or through RNAi-mediated depletion of the ATG5 gene enhanced the cytotoxic activity of Ant1,5, as revealed by the marked increase in drug-induced apoptosis. Our data outline a molecular scenario in which G-quadruplex ligand-induced telomeric dysfunctions and DNA damage are translated into an autophagic response and provide the first evidence of autophagy as a safeguard mechanism activated by melanoma cells to counteract G-quadruplex ligand-mediated cellular stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号