共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to develop new drugs for Alzheimer’s disease, we prepared 17 fatty acid derivatives with different chain lengths and different numbers and positions of double bonds by using Wittig reaction and stereospecific hydrogenation of triple bonds as key reactions. Among them, (4 Z,15 Z)-octadecadienoic acid ( 10) and (23 Z,34 Z)-heptatriacontadienoic acid ( 16) showed the most potent neurite outgrowth activities on Aβ(25–35)-treated rat cortical neurons, which activities were comparable to that of a positive control, NGF. Both fatty acids 10 and 16 possess two ( Z)-double bonds at the n-3 and n-14 positions, which might be important for the neurite outgrowth activity. 相似文献
2.
To search for multifunctional anti-Alzheimer’s disease (AD) agents with good safety, the previously synthesized tacrine–flurbiprofen hybrids 1a and 1b were modified into tacrine–flurbiprofen–nitrate trihybrids 3a– h. These compounds displayed comparable or higher cholinesterase inhibitory activity relative to the bivalent hybrids. Compound 3a was the most potent, which released moderate NO, exerted blood vessel relaxative activity, and showed significant Aβ inhibitory effects whereas tacrine and flurbiprofen did not exhibit any Aβ inhibitory activity at the same dose. In addition, 3a was active in improving memory impairment in vivo. More importantly, the hepatotoxicity study showed that 3a was much safer than tacrine, suggesting it might be a promising anti-AD agent for further investigation. 相似文献
3.
Alzheimer's disease (AD) is a progressive neurological degenerative disease that has complex pathogenesis. A variety of studies in humans indicate that several enzymes inhibitors can be useful in the treatment of AD, including acetylcholinesterase (AchE), butyrylcholinesterase (BuChE) and monoamine oxidase (MAO). Various substituted 4-arylcoumarin derivatives were synthesised, and their activity in vitro were investigated, including AChE/BuChE inhibitory activity, MAO inhibitory activity, and antioxidant activity. Most of the compounds were found to exhibit high inhibitory activity, and individual compounds have extremely excellent activities. Therefore 4-arylcoumarins provides an idea for drugs design for the development of therapeutic or preventive agents for AD. 相似文献
4.
The design, synthesis and assessment of β-carboline core-based compounds as potential multifunctional agents against several processes that are believed to play a significant role in Alzheimer’s disease (AD) pathology, are described. The activity of the compounds was determined in Aβ self-assembly (fibril and oligomer formation) and cholinesterase (AChE, BuChE) activity inhibition, and their antioxidant properties were also assessed. To obtain insight into the mode of action of the compounds, HR-MS studies were carried out on the inhibitor-Aβ complex formation and molecular docking was performed on inhibitor-BuChE interactions. While several compounds exhibited strong activities in individual assays, compound 14 emerged as a promising multi-target lead for the further structure-activity relationship studies. 相似文献
5.
In an attempt to construct potential anti-Alzheimer’s agents Naphthalene-triazolopyrimidine hybrids were synthesized and screened in vitro against the two cholinesterases (ChE)s, amyloid β aggregation and for antioxidation activity. Single-crystal X-ray crystallography was utilized for crystal structure determination of one of the compounds. In vitro study of compounds revealed that most of the compounds are capable of inhibiting acetylcholinesterase and Butyrylcholinesterase activity. Particularly, the compounds 4e and 4d exhibited IC 50 values ranging from 8.6 to 14 nM against AChE lower than the standard drug Donepezil (IC 50 49 nM). Best result was found for compound 4e with IC 50 of 8.6 nM (for AChE) and 150 nM (for BuChE). Selectivity upto that of Donepezil and even more was observed for 4a, 4c and 4h. Investigation by electron microscopy, transmission electron microscopy and ThT fluorescence assay unveils the fact that synthesized hybrids exhibit amyloid β self-aggregation inhibition. The compounds 4i and 4j revealed highest inhibitory potential, 85.46% and 72.77% at 50 μM respectively; above the standard Aβ disaggregating agent, Curcumin. Their antioxidation profile was also analyzed. Studies from DPPH free radical scavenging assay and ORAC assay depicts molecules to possess low antioxidation profile. Results suggest that triazolopyrimidines are potential candidate for Acetylcholinesterase (AChE), Butyrylcholinesterase (BuChE), and amyloid β aggregation inhibition. In silico ADMET profiling indicates drug-like properties with a very low toxic influence. Such synthesized compounds provide a strong vision for further development of potential anti-Alzheimer’s agents. 相似文献
6.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease affecting 25 million people worldwide, and cholinergic hypothesis is considered as an important hypotheses in the processes of improving cognitive function and recognition skills in recent years. For the long-term treatment of AD, traditional Chinese medicine are particularly suitable for drug discovery. In this review, we sum up six traditional Chinese medicinal herbs concerned with development of AChEIs, including Herba Epimedii, Coptis Chinensis Franch, Rhizoma Curcumae Longae, Green tea, Ganoderma, Panax Ginseng. The listed compounds based on these herbs are belonging to six classes Flavonoids, Alkaloids, Ketones, Polyphenols, Terpenoid and Saponins, respectively. These compounds could be very promising agents in the search for potent anti-Alzheimer’s drugs. 相似文献
8.
Multi-Target approach is particularly promising way to drug discovery against Alzheimer's disease. In the present study, we synthesized a series of compounds comprising the carbazole backbone linked to the benzyl piperazine, benzyl piperidine, pyridine, quinoline, or isoquinoline moiety through an aliphatic linker and evaluated as cholinesterase inhibitors. The synthesized compounds showed IC 50 values of 0.11–36.5 µM and 0.02–98.6 µM against acetyl- and butyrylcholinesterase (AChE and BuChE), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 3s could bind effectively to the peripheral anionic binding site (PAS) and anionic site of the enzyme with mixed-type inhibition. Compound 3s was the most potent compound against AChE and BuChE and showed acceptable inhibition potency for self- and AChE-induced Aβ 1-42 aggregation. Moreover, compound 3s could significantly protect PC12 cells against H 2O 2-induced toxicity. The results suggested that the compounds 3s could be considered as a promising multi-functional agent for further drug discovery development against Alzheimer's disease. 相似文献
9.
A new series of multifunctional hybrids, based on the structure of the donepezil (DNP) drug, have been developed and evaluated as potential anti Alzheimer’s disease (AD) agents. The rationale of this study was the conjugation of a benzylpiperidine/benzylpiperazine moiety with derivatives of bioactive heterocyclics (benzimidazole or benzofuran), to mimic the main structure of DNP and to endow the hybrids with additional relevant properties such as inhibition of amyloid beta (Aβ) peptide aggregation, antioxidant activity and metal chelation. Overall, they showed good activity for AChE inhibition (IC 50=4.0–30.0 μΜ) and moderate ability for inhibition of Aβ 1–42 self-mediated aggregation. The hybrids containing chelating groups showed improvement in the inhibition of Cu-induced Aβ 42 aggregation and the antioxidant capacity. Moreover, neuroprotective effects of these compounds were evidenced in neuroblastoma cells after Aβ 1–42 induced toxicity. Structure–activity relationship allowed the identification of some promising compounds and the main determinant structural features for the targeted properties. 相似文献
11.
Introduction: Alzheimer’s disease (AD) is a neurodegenerative disease affecting the brain. Today there are three cerebrospinal fluid (CSF) biomarkers, amyloid-β consisting of 42 amino acids (Aβ42), total-tau (t-tau) and phosphorylated-tau (p-tau), which combined have sensitivity and specificity figures around 80%. However, pathological studies have shown that comorbidity is a common feature in AD and that the three currently used CSF biomarkers do not optimally reflect the activity of the disease process. Thus, additional markers are needed. Areas covered: In the present review, we screened PubMed for articles published the last five years (2012–2017) for proteomic studies in CSF with the criteria that AD had to be included as one of the diagnostic groups. Based on inclusion criteria, 28 papers were included reporting in total 224 biomarker-data that were altered in AD compared to control. Both mass spectrometry and multi-panel immunoassays were considered as proteomic studies. Expert commentary: A large number of pilot studies have been reported but so far there is a lack of replicated findings and to date no CSF biomarker discovered in proteomic studies has reached the clinic to aid in the diagnostic work-up of patients with cognitive impairment. 相似文献
12.
<正>Dear Editor.Meniere's disease (MD,MIM 156000),a chronic clinical illness affecting the inner ear,presents as episodes of spontaneous vertigo,fluctuating sensorineural hearing loss,tinnitus,and aural fullness.Endolymphatic hydrops in the cochlear duct and vestibular organs is considered the underlying histopathologic characteristic of MD.Most MD cases are sporadic (sporadic Meniere's disease,SMD),and approximately 4%-20%of patients with MD have a familial history.Familial Meniere's disease (FMD) is defined as the clinical symptoms of at least one patient's relative (first-or 相似文献
13.
Alzheimer’s disease (AD) and cardiovascular diseases (CVD) share common etiology and preventive strategies. As the population of old-aged people is increasing worldwide, AD complications tend to afflict global healthcare budget and economy heavily. CVD is the prime cause of global mortality and remains a grave threat to both the developed and the developing nations. Mushroom bio-components may be promising in controlling both diseases. Based mainly on in vitro, ex vivo, cell line and animal studies, this review interprets the polypharmaceutic role of mushrooms treating AD and CVD. 相似文献
14.
BackgroundAlzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer’s patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually.ResultsThe present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials.ConclusionsBased on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD. 相似文献
15.
Owning to the promising neuroprotective profile and the ability to cross the blood–brain barrier, triptolide has attracted extensive attention. Although its limited solubility and toxicity have greatly hindered clinical translation, triptolide has nonetheless emerged as a promising candidate for structure–activity relationship studies for Alzheimer’s disease. In the present study, a series of triptolide analogs were designed and synthesized, and their neuroprotective and anti-neuroinflammatory effects were then tested using a cell culture model. Among the triptolide derivatives tested, a memantine conjugate, compound 8, showed a remarkable neuroprotective effect against Aβ 1–42 toxicity in primary cortical neuron cultures as well as an inhibitory effect against LPS-induced TNF-α production in BV2 cells at a subnanomolar concentration. Our findings provide insight into the different pharmacophores that are responsible for the multifunctional effects of triptolide in the central nervous system. Our study should help in the development of triptolide-based multifunctional anti-Alzheimer drugs. 相似文献
16.
A QSAR study was performed in an attempt to explore the pharmacophore of some benzodiazepine derivatives as anti-Alzheimer agents for the inhibition of -secretase. The study, which used the electrotopological state atom (ETSA) index, which encodes electronic and topological information, reveals the importance of two phenyl rings—one substituted and another unsubstituted, for the inhibition of the enzyme. Fluorine substitution on the substituted phenyl ring has an important contribution to the activity. R-configurations of the aliphatic chain substituents provide the exact conformation of the molecules to enter into the binding pockets of the receptor(s). Figure General structure of benzodiazepine containing -secretase inhibitors 相似文献
17.
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common form of dementia. The disease is confirmed by the presence of neuritic plaques and neurofibrillary tangles in the cerebral cortex at autopsy, but the accuracy of antemortem diagnosis, especially at the early stages of the disease, is not ideal. Thus, there is a substantial need for the discovery and validation of diagnostic biomarkers. Many Alzheimer’s disease biomarker discovery studies emphasize the analysis of cerebrospinal fluid (CSF) because of its close association with the brain. Here, we review recent mass spectrometry-based studies of Alzheimer’s disease CSF, and additionally discuss issues associated with CSF in proteomics studies. 相似文献
18.
A novel series of benzylpyridinium-based benzoheterocycles (benzimidazole, benzoxazole or benzothiazole) were designed as potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The title compounds 4a-q were conveniently synthesized via condensation reaction of 1,2-phenylenediamine, 2-aminophenol or 2-aminothiophenol with pyridin-4-carbalehyde, followed by N-benzylation using various benzyl halides. The results of in vitro biological assays revealed that most of them, especially 4c and 4g, had potent anticholinesterase activity comparable or more potent than reference drug, donepezil. The kinetic study demonstrated that the representative compound 4c inhibits AChE in competitive manner. According to the ligand-enzyme docking simulation, compound 4c occupied the active site at the vicinity of catalytic triad. The compounds 4c and 4g were found to be inhibitors of Aβ self-aggregation as well as AChE-induced Aβ aggregation. Meanwhile, these compounds could significantly protect PC12 cells against H 2O 2-induced injury and showed no toxicity against HepG2 cells. As multi-targeted structures, compounds 4c and 4g could be considered as promising candidate for further lead developments to treat Alzheimer’s disease. 相似文献
19.
The activity of complex I of the mitochondrial respiratory chain has been found to be decreased in patients with Parkinsons disease (PD), but no mutations have been identified in genes encoding complex I subunits. Recent studies have suggested that polymorphisms in mitochondrial DNA (mtDNA)-encoded complex I genes (MTND) modify susceptibility to PD. We hypothesize that the risk of PD is conveyed by the total number of nonsynonymous substitutions in the MTND genes in various mtDNA lineages rather than by single mutations. To test this possibility, we determined the number of nonsynonymous substitutions of the seven MTND genes from 183 Finns. The differences in the total number of nonsynonymous substitutions and the nonsynonymous to synonymous substitution rate ratio ( Ka/ Ks) of MTND genes between the European mtDNA haplogroup clusters (HV, JT, KU, IWX) were analysed by using a statistical approach. Patients with PD ( n=238) underwent clinical examination together with mtDNA haplogroup analysis and the clinical features between patient groups defined by the number of nonsynonymous substitutions were compared. Our analysis revealed that the haplogroup clusters HV and KU had a lower average number of amino acid replacements and a lower Ka/ Ks ratio in the MTND genes than clusters JT and IWX. Supercluster JTIWX with the highest number of amino acid replacements was more frequent among PD patients and even more frequent among patients with PD who developed dementia. Our results suggest that a relative excess of nonsynonymous mutations in MTND genes in supercluster JTWIX is associated with an increased risk of PD and the disease progression to dementia. 相似文献
20.
The study was done to identify the candidate causal single nucleotide polymorphisms (SNPs) and candidate causal mechanisms that contribute to Parkinson’s disease (PD) susceptibility and to generate a SNP to ene to pathway hypothesis using an analytical pathway-based approach. We used a PD genome-wide association study (GWAS) meta-analysis data of the genotypes of 2,525,705 SNPs in 4,238 PD cases and 4,239 controls. Identify candidate Causal SNPs and Pathways (ICSNPathway) analysis was applied to the PD GWAS dataset. The first stage involved the pre-selection of candidate causal SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate causal SNPs using improved-gene set enrichment analysis. ICSNPathway analysis identified three candidate SNPs, two genes, twenty-one pathways, and three hypothetical biological mechanisms: (1) rs17651549 to microtubule-associated protein tau (MAPT) to protein domain specific binding (nominal p < 0.001, false discovery rate (FDR) < 0.001), neurogenesis (nominal p < 0.001, FDR < 0.001), regulation of neurogenesis (nominal p < 0.001, FDR = 0.001), positive regulation of axonogenesis (nominal p < 0.001, FDR = 0.001), regulation of protein polymerization (nominal p < 0.001, FDR = 0.004), negative regulation of organelle organization (nominal p < 0.001, FDR = 0.004), hsa01510 (nominal p < 0.001, FDR = 0.005), neuron differentiation (nominal p < 0.001, FDR = 0.009), and axonogenesis (nominal p < 0.001, FDR = 0.009); (2) rs10445337 to MAPT to protein domain specific binding (nominal p < 0.001, FDR < 0.001), neurogenesis (nominal p < 0.001, FDR < 0.001), regulation of neurogenesis (nominal p < 0.001, FDR = 0.001), and positive regulation of axonogenesis (nominal p < 0.001, FDR = 0.001); (3) rs9938550 to HSD3B7 to hsa00363 (nominal p < 0.001, FDR = 0.004), bile acid metabolic process (nominal p = 0.005, FDR = 0.019), and steroid metabolic process (nominal p = 0.010, FDR = 0.039). By applying the ICSNPathway analysis to PD GWAS meta-analysis data, three candidate SNPs, two genes (MAPT and HSD3B7), and 21 pathways involving protein domain specific binding and neurogenesis were identified, which may contribute to PD susceptibility. 相似文献
|