首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Phytochemistry》1987,26(7):1927-1930
The isotope ratios (3H:14C) in arteannuin B and artemisinin biosynthesized in Artemisia annua from [4R-3H1,2-14C]-, [5-3H2,2-14C]- and [2-3H2,2-14C](3RS)- mevalonate have revealed that two specific 1,2-hydride shifts take place during the oxidation and lactonization of the germacrane skeleton to yield dihydrocostunolide. The gem-methyls of DMAPP retain their identity until the final steps of artemisinin biosynthesis. Arteannuin B is considered to be a late precursor of artemisinin and the following biosynthetic sequence is suggested: farnesylpyrophosphate → germacrane skeleton → dihydrocostunolide → cadinanolide → arteannuin B → artemisinin.  相似文献   

2.
Artemisinin, the endoperoxide sesquiterpene lactone, is an effective antimalarial drug isolated from the Chinese medicinal plant Artemisia annua L. Due to its effectiveness against multi-drug-resistant cerebral malaria, it becomes the essential components of the artemisinin-based combination therapies which are recommended by the World Health Organization as the preferred choice for malaria tropica treatments. To date, plant A. annua is still the main commercial source of artemisinin. Although semi-synthesis of artemisinin via artemisinic acid in yeast is feasible at present, another promising approach to reduce the price of artemisinin is using plant metabolic engineering to obtain a higher content of artemisinin in transgenic plants. In the past years, an Agrobacterium-mediated transformation system of A. annua has been established by which a number of genes related to artemisinin biosynthesis have been successfully transferred into A. annua plants. In this review, the progress on increasing artemisinin content in A. annua by transgenic approach and its future prospect are summarized and discussed.  相似文献   

3.
Artemisinin, an anti-malarial drug isolated from the annual wormwood Artemisia annua L., has a marked activity against chloroquine-resistant and chloroquine-sensitive strains of Plasmodium falciparum, and is useful in treatment of cerebral malaria. Shoot cultures of Artemisia annua L. were established on Murashige and Skoog basal medium which contained (per litre) 30 g sucrose, 0.5 mg 6-benzyladenine and 0.05 mg naphthaleneacetic acid. Using an optimized combination of sucrose (30 g/l), nitrate (45 mM), inorganic phosphate (200 mg/l), gibberellic acid (7 mg/l) and the ratio of NH4 +-N to NO3 -N of 1:3, artemisinin production reached 26.7 mg/l after 30 days. This procedure provides a potential alternative for production of artemisinin from in vitro tissue cultures.  相似文献   

4.
Metabolic engineering of artemisinin biosynthesis in Artemisia annua L.   总被引:1,自引:0,他引:1  
Liu B  Wang H  Du Z  Li G  Ye H 《Plant cell reports》2011,30(5):689-694
Artemisinin, a sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L., is an effective antimalarial agent, especially for multi-drug resistant and cerebral malaria. To date, A. annua is still the only commercial source of artemisinin. The low concentration of artemisinin in A. annua, ranging from 0.01 to 0.8% of the plant dry weight, makes artemisinin relatively expensive and difficult to meet the demand of over 100 million courses of artemisinin-based combinational therapies per year. Since the chemical synthesis of artemisinin is not commercially feasible at present, another promising approach to reduce the price of artemisinin-based antimalarial drugs is metabolic engineering of the plant to obtain a higher content of artemisinin in transgenic plants. In the past decade, we have established an Agrobacterium-mediated transformation system of A. annua, and have successfully transferred a number of genes related to artemisinin biosynthesis into the plant. The various aspects of these efforts are discussed in this review.  相似文献   

5.
《Phytomedicine》2015,22(14):1223-1231
BackgroundArtemisia annua L, artemisinin and artesunate reveal profound activity not only against malaria, but also against cancer in vivo and clinical trials. Longitudinal observations on the efficacy of A. annua in patients are, however missing as of yet.MethodsClinical diagnosis was performed by imaging techniques (MRT, scintigraphy, SPECT/CT) and blood examinations of standard parameters from clinical chemistry. Immunohistochemistry of formalin-fixed, paraffin-embedded tumor material was performed to determine the expression of several biomarkers (cycloxygenase-2 (COX2), epidermal growth factor receptor (EGFR), glutathione S-transferase P1 (GSTP1), Ki-67, MYC, oxidized low density lipoprotein (lectin-like) receptor 1 (LOX1), p53, P-glycoprotein, transferrin receptor (TFR, CD71), vascular endothelial growth factor (VEGF), von Willebrand factor (CD31)). The immunohistochemical expression has been compared with the microarray-based mRNA expression of these markers in two prostate carcinoma cell lines (PC-3, DU-145).ResultsA patient with prostate carcinoma (pT3bN1M1, Gleason score 8 (4+4)) presented with a prostate specific antigen (PSA) level >800 µg/l. After short-term treatment with bacalitumide (50 mg/d for 14 days) and long-term oral treatment with A. annua capsules (continuously 5 × 50 mg/d), the PSA level dropped down to 0.98 µg/l. MRT, scintigraphy and SPECT/CT verified tumor remission. Seven months later, PSA and ostase levels increased, indicating tumor recurrence and skeletal metastases. Substituting A. annua capsules by artesunate injections (2 × 150 mg twice weekly i.v.) did not prohibit tumor recurrence. PSA and ostase levels rose to 1245 µg/l and 434 U/l, respectively, and MRT revealed progressive skeletal metastases, indicating that the tumor acquired resistance. The high expression of MYC, TFR, and VEGFC in the patient biopsy corresponded with high expression of these markers in the artemisinin-sensitive PC-3 cells compared to artemisinin-resistant DU-145 cells.ConclusionLong-term treatment with A. annua capsules combined with short-term bicalitumide treatment resulted in considerable regression of advanced metastasized prostate carcinoma. Controlled clinical trials are required to evaluate the clinical benefit of A. annua in prostate cancer.  相似文献   

6.
Artemisinin is a polycyclic sesquiterpene lactone that is highly effective against multidrug-resistant strains of Plasmodium falciparum, the etiological agent of the most severe form of malaria. Determination of artemisinin in the source plant, Artemisia annua, is a challenging problem since the compound is present in very low concentrations, is thermolabile and unstable, and lacks chromophoric or fluorophoric groups. The ain of this study was to develop a simple protocol for the quantification of artemisinin in a plant extract using an (1)H-NMR method. Samples were prepared by extraction of leaf material with acetone, treatment with activated charcoal to remove chlorophylls and removal of solvent. (1)H-NMR spectra were measured on samples dissolved in deuterochloroform with tert-butanol as internal standard. Quantification was carried out using the using the delta 5.864 signal of artemisinin and the delta 1.276 signal of tert-butanol. The method was optimised and fully validated against a reference standard of artemisinin. The results were compared with those obtained from the same samples quantified using an HPLC-refractive index (RI) method. The (1)H-NMR method gave a linear response for artemisinin within the range 9.85-97.99 mm (r(2) = 0.9968). Using the described method, yields of artemisinin in the range 0.77-1.06% were obtained from leaves of the A. annua hybrid CPQBA x POP, and these values were in agreement with those obtained using an HPLC-RI.  相似文献   

7.
8.
Production of artemisinin by hairy root cultures of Artemisia annua L   总被引:7,自引:0,他引:7  
Using a combination of sucrose (70 g/L), nitrate (30 mM), inorganic phosphate (1.5 mM), gibberellic acid (5 mg/L) and the ratio of N (NH ) to N - (NO ) (1:5), artemisinin production was increased to 550 mg/L when the cultures of Artemisia annua L hairy root were elicited with a homogenate of Aspergillus oryzae.  相似文献   

9.
The protein involved in the conversion of arteannuin B to artemisinin has been purified from the leaves of Artemisia annua. The pure protein found to be homogenous on Native gel electrophoresis showed two major bands of 21 and 11 kDa on 12% SDS-PAGE. Molecular weight estimation of native protein indicated an apparent molecular mass of 66,000 Daltons. This protein is able to achieve 58% conversion. It has a K(m) of 0.5 mM for arteannuin B and a pH optima between 7.0-7.2. It is maximally active at 30 degrees C.  相似文献   

10.
Artemisinin, isolated from the shrub-Artemisia annua, is a sesquiterpene lactone used to treat multi-drug resistant strains of falciparum malaria. It is also effective against a wide variety of cancers such as leukemia and colon cancer. To counter the present low content in leaves and uneconomical chemical synthesis, alternate ways to produce artemisinin have been sought. But this compound remains elusive in cell cultures of A. annua despite the extensive studies undertaken. This work reports the first successful approach for production of artemisinin by cell cultures of Indian variety of A. annua. In the present study, an integrated yield enhancement strategy, developed by addition of selected precursor (mevalonic acid lactone) and elicitor (methyl jasmonate) at optimized concentrations, resulted in 15.2g/l biomass and 110.2mg/l artemisinin, which was 5.93 times higher in productivity in comparison to control cultures.  相似文献   

11.
Scaled-up hairy root culture of Artemisia annua L. was established in three-liter Erlenmeyer flask. Both artemisinin and stigmasterol that derive from the common precursors of isopentenyl diphosphate and farnesyl pyrophosphate were isolated from hairy roots. The production rate of artemisinin isolated by column chromatography from hairy root cultures was 0.54% (mg.gDW−1). Stigmasterol was identified by mass spectrometry and nuclear magnetic resonance analysis. The production of stigmasterol isolated by column chromatography from hairy root cultures was 108.3% (mg.gDW−1). In hairy root cultures, the production rate of stigmasterol was estimated to be 201 times greater than that of artemisinin. Our results suggest that investigation of secondary metabolites may provide a new insight to study artemisinin production in hairy root cultures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.

Background and Aims

The resurgence of malaria, particularly in the developing world, is considerable and exacerbated by the development of single-gene multi-drug resistances to chemicals such as chloroquinone. Drug therapies, as recommended by the World Health Organization, now include the use of antimalarial compounds derived from Artemisia annua – in particular, the use of artemisinin-based ingredients. Despite our limited knowledge of its mode of action or biosynthesis there is a need to secure a supply and enhance yields of artemisinin. The present study aims to determine how plant biomass can be enhanced while maximizing artemisinin concentration by understanding the plant''s nutritional requirements for nitrogen and potassium.

Methods

Experiments were carried out, the first with differing concentrations of nitrogen, at 6, 31, 56, 106, 206 or 306 mg L−1 being applied, while the other differing in potassium concentration (51, 153 or 301 mg L−1). Nutrients were supplied in irrigation water to plants in pots and after a growth period biomass production and leaf artemisinin concentration were measured. These data were used to determine optimal nutrient requirements for artemisinin yield.

Key Results

Nitrogen nutrition enhanced plant nitrogen concentration and biomass production successively up to 106 mg N L−1 for biomass and 206 mg N L−1 for leaf nitrogen; further increases in nitrogen had no influence. Artemisinin concentration in dried leaf material, measured by HPLC mass spectroscopy, was maximal at a nitrogen application of 106 mg L−1, but declined at higher concentrations. Increasing potassium application from 51 to 153 mg L−1 increased total plant biomass, but not at higher applications. Potassium application enhanced leaf potassium concentration, but there was no effect on leaf artemisinin concentration or leaf artemisinin yield.

Conclusions

Artemisinin concentration declined beyond an optimal point with increasing plant nitrogen concentration. Maximization of artemisinin yield (amount per plant) requires optimization of plant biomass via control of nitrogen nutrition.Key words: Artemisia, fertigation, malaria, nitrogen, nutrition, potassium  相似文献   

13.
14.
Hairy root cultures of Artemisia annua L were cultivated in four different culture systems: a flask, a bubble column, a modified bubble column and a modified inner-loop airlift bioreactor. The artemisinin contents of hairy root cultures in the bubble column and the modified inner-loop airlift bioreactor were higher than that in the modified bubble column. The growth rate and hairy root distribution in the modified inner-loop airlift bioreactor were better than those in other bioreactors, and dry weight and artemisinin production reached to 26.8 g/L and 536 mg/L after 20 days.  相似文献   

15.
Summary Artemisinin (AN), a potent antimalarial drug that has been used for centuries as a folk remedy in China, is an effective treatment against quinine-resistant strains of Plasmodium. It can be produced through the in vitro culture of genetically transformed (hairy) roots. The effect of gibberellic acid (GA3) on the growth and secondary metabolite production of hairy roots of Artemisia annua was investigated. Six different concentrations of GA3 were tested in shaker flasks to determine the optimum concentration. GA3 levels of 0.01–0.001 mg/l (28.9–2.89 μM) provided the most significant increase in biomass, and 0.01 mg/l (28.9 μM) produced the highest amount of AN. Investigation of growth kinetics showed that the use of GA3 at 0.01 mg/l (28.9 μM) increased the growth rate of hairy roots of A. annua by 24.9%. Thus, the cultures treated with GA3 reached stationary phase faster than control cultures.  相似文献   

16.
17.
《Phytochemistry》1986,25(12):2892-2893
Artemisia annua, a medicinal plant native to China has been introduced into India. In addition to known monoterpenoids, novel sesquiterpenoids including artemisinin, arteannuin-B and flavonoids the plant yielded a new sesquiterpene lactone now named as arteannuin-C.  相似文献   

18.
PeroxiBase: a class III plant peroxidase database   总被引:7,自引:0,他引:7  
Class III plant peroxidases (EC 1.11.1.7), which are encoded by multigenic families in land plants, are involved in several important physiological and developmental processes. Their varied functions are not yet clearly determined, but their characterization will certainly lead to a better understanding of plant growth, differentiation and interaction with the environment, and hence to many exciting applications. Since there is currently no central database for plant peroxidase sequences and many plant sequences are not deposited in the EMBL/GenBank/DDBJ repository or the UniProt KnowledgeBase, this prevents researchers from easily accessing all peroxidase sequences. Furthermore, gene expression data are poorly covered and annotations are inconsistent. In this rapidly moving field, there is a need for continual updating and correction of the peroxidase superfamily in plants. Moreover, consolidating information about peroxidases will allow for comparison of peroxidases between species and thus significantly help making correlations of function, structure or phylogeny. We report a new database (PeroxiBase) accessible through a web server with specific tools dedicated to facilitate query, classification and submission of peroxidase sequences. Recent developments in the field of plant peroxidase are also mentioned.  相似文献   

19.
Tetraploid Artemisia annua plants were successfully inducted by using colchicine, and their ploidy was confirmed by flow cytometry. Higher stomatal length but lower frequency in tetraploids were revealed and could be considered as indicators of polyploidy. The average level of artemisinin in tetraploids was increased from 39% to 56% than that of the diploids during vegetation period, as detected by high-performance liquid chromatography-evaporative light scattering detector. Gene expressions of 10 key enzymes related to artemisinin biosynthetic pathway in different ploidy level were analyzed by semiquantitative polymerase chain reaction and significant upregulation of FPS, HMGR, and artemisinin metabolite-specific Aldh1 genes were revealed in tetraploids. Slight increased expression of ADS was also detected. Our results suggest that higher artemisinin content in tetraploid A. annua may result from the upregulated expression of some key enzyme genes related to artemisinin biosynthetic pathway.  相似文献   

20.
Hairy root cultures of Artemisia annua L were cultivated for 30 days under either white, red, blue, yellow or green light. Red light at 660 nm gave the highest biomass of hairy roots (5.73 g dry wt cells l–1 medium) and artemisinin content (31 mg arteminsinin g–1 dry cells) which were, respectively, 17% and 67% higher than those obtained under white light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号