首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.  相似文献   

2.
3.

Background

The mecA gene, encoding methicillin resistance in staphylococci, is located on a mobile genetic element called Staphylococcal Cassette Chromosome mec (SCCmec). Horizontal, interspecies transfer of this element could be an important factor in the dissemination of methicillin-resistant S. aureus (MRSA). Previously, we reported the isolation of a closely related methicillin-susceptible Staphylococcus aureus (MSSA), MRSA and potential SCCmec donor Staphylococcus epidermidis isolate from the same patient. Based on fingerprint techniques we hypothesized that the S. epidermidis had transferred SCCmec to the MSSA to become MRSA. The aim of this study was to show that these isolates form an isogenic pair and that interspecies horizontal SCCmec transfer occurred.

Methodology/Results

Whole genome sequencing of both isolates was performed and for the MSSA gaps were closed by conventional sequencing. The SCCmec of the S. epidermidis was also sequenced by conventional methods. The results show no difference in nucleotide sequence between the two isolates except for the presence of SCCmec in the MRSA. The SCCmec of the S. epidermidis and the MRSA are identical except for a single nucleotide in the ccrB gene, which results in a valine to alanine substitution. The main difference with the closely related EMRSA-16 is the presence of SaPI2 encoding toxic shock syndrome toxin and exfoliative toxin A in the MSSA-MRSA pair. No transfer of SCCmec from the S. epidermidis to the MSSA could be demonstrated in vitro.

Conclusion

The MSSA and MRSA form an isogenic pair except for SCCmec. This strongly supports our hypothesis that the MRSA was derived from the MSSA by interspecies horizontal transfer of SCCmec from S. epidermidis O7.1.  相似文献   

4.

Background

Antibiotic-resistant Staphylococcus aureus infections have increased dramatically in the community, yet S. aureus nasal colonization has remained stable. The objectives of this study were to determine if S. aureus colonization is a useful proxy measure to study disease transmission and infection in community settings, and to identify potential community reservoirs.

Methodology/Principal Findings

Randomly selected households in Northern Manhattan, completed a structured social network questionnaire and provided nasal swabs that were typed by pulsed field gel electrophoresis to identify S. aureus colonizing strains. The main outcome measures were: 1) colonization with S. aureus; and 2) recent serious skin infection. Risk factor analyses were conducted at both the individual and the household levels; logistic regression models identified independent risks for household colonization and infection.

Results

321 surveyed households contained 914 members. The S. aureus prevalence was 25% and MRSA was 0.4%. More than 40% of households were colonized. Recent antibiotic use was the only significant correlate for household colonization (p = .002). Seventy-eight (24%) households reported serious skin infection. In contrast with colonization, five of the six risk factors that increased the risk of skin infection in the household at the univariate level remained independently significant in multivariable analysis: international travel, sports participation, surgery, antibiotic use and towel sharing. S. aureus colonization was not significantly associated with serious skin infection in any analysis. Among multiperson households with more than one person colonized, 50% carried the same strain.

Conclusions/Significance

The lack of association between S. aureus nasal colonization and serious skin infection underscores the need to explore alternative venues or body sites that may be crucial to transmission. Moreover, the magnitude of colonization and infection within the household suggests that households are an underappreciated and substantial community reservoir.  相似文献   

5.

Background

Methicillin-resistant Staphylococcus aureus (MRSA) infection is an important public health issue. The study aimed to characterize the patient demographics, clinical features, antibiotic susceptibility, and clinical outcomes of keratitis caused by S. aureus, and to make a comparison between MRSA and methicillin-sensitive S. aureus (MSSA) isolates.

Methodology/Principal findings

Patients (n = 59) with culture-proven S. aureus keratitis treated in Chang Gung Memorial Hospital between January 1, 2006, and December 31, 2010, were included in our study. Patients'' demographic and clinical data were retrospectively reviewed. Twenty-six MRSA (44%) and 33 MSSA (56%) isolates were collected. The MRSA keratitis was significantly more common among the patients with healthcare exposure (P = 0.038), but 46.2% (12/26) of patients with MRSA keratitis were considered to have community-associated infections. All isolates were susceptible to vancomycin. MRSA isolates were significantly more resistant to clindamycin, erythromycin, and sulfamethoxazole/trimethoprim. Ocular surface disease was a significant risk factor for MRSA keratitis (P = 0.011). Visual outcome did not differ significantly between the MRSA and MSSA groups. However, age (B = 0.01, P = 0.035, 95% confidence interval [CI]: 0.001–0.019) and visual acuity at presentation (B = 0.749, P<0.001, 95% CI: 0.573–0.926) were significantly correlated with visual outcome.

Conclusions/Significance

Ocular surface disease is an important predisposing factor for S. aureus keratitis, especially for MRSA infections. Advanced age and poor visual acuity at presentation are important prognostic indicators for poor visual outcome in S. aureus keratitis. Oxacillin resistance may not be a significant prognostic indicator.  相似文献   

6.
We present genetic studies that help define the functional network underlying intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Our analysis shows that proteolysis, particularly that controlled by the membrane protease FtsH, is a major determinant of resistance. First, we examined the consequences of inactivating genes controlled by AmgRS, a two-component regulator required for intrinsic tobramycin resistance. Three of the gene products account for resistance: a modulator of FtsH protease (YccA), a membrane protease (HtpX), and a membrane protein of unknown function (PA5528). Second, we screened mutations inactivating 66 predicted proteases and related functions. Insertions inactivating two FtsH protease accessory factors (HflK and HflC) and a cytoplasmic protease (HslUV) increased tobramycin sensitivity. Finally, we generated an ftsH deletion mutation. The mutation dramatically increased aminoglycoside sensitivity. Many of the functions whose inactivation increased sensitivity appeared to act independently, since multiple mutations led to additive or synergistic effects. Up to 500-fold increases in tobramycin sensitivity were observed. Most of the mutations also were highly pleiotropic, increasing sensitivity to a membrane protein hybrid, several classes of antibiotics, alkaline pH, NaCl, and other compounds. We propose that the network of proteases provides robust protection from aminoglycosides and other substances through the elimination of membrane-disruptive mistranslation products.  相似文献   

7.
BackgroundThe role of general practitioners (GPs) as reservoir and potential source for Staphylococcus aureus (SA) transmission is unknown. Our primary objective was to evaluate the prevalence of SA and community-acquired methicillin resistant SA (CA-MRSA) carrier status (including spa typing) among GPs and their patients in Belgium. The secondary objective was to determine the association between SA/CA-MRSA carriage in patients and their characteristics, SA carriage in GPs, GP and practice characteristics.MethodsThe Belgian GPs, who swabbed their patients in the APRES study (which assessed the prevalence of SA nasal carriage in nine European countries; November 2010 –June 2011), were asked to swab themselves as well (May-June 2011). GPs and their patients had to complete a questionnaire on factors related to SA carriage and transmission. SA isolation including CA-MRSA and spa typing was performed on the swabs.ResultsIn eighteen practices 34 GPs swabbed patients of which 25 GPs provided personal swabs. The analysis was performed on 3008 patient records. Among GPs SA carriage (28%) was more prevalent than among their patients (19.2%), but CA-MRSA carriage was not present. SA was more prevalent among younger patients and those living with cattle. Spa typing SA and MRSA strains did not suggest correlation within practices or between patients and GPs, but chronic skin conditions of GPs and always handshaking patients by SA positive GPs were associated with more SA among patients, and hand washing after every patient contact with less SA among patients in practices with high antibiotic prescribing rates.ConclusionNo MRSA was found among GPs, although their SA carriership was higher compared to their patients’. Spa types did not cluster within practices, possibly due to difference in timing of swabbing. To minimise SA transmission to their patients GPs should consider taking appropriate care of their chronic skin diseases, antibiotic prescribing behaviour, handshaking and hand washing habits.  相似文献   

8.
9.
Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) were used in vitro and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6) from severe Escherichia coli sepsis (n = 10) and identified treatment responses over time. Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S. aureus sepsis. Taken together, this study provides a proof of concept of the utility of analyzing metabolite patterns in blood for early differentiation between ineffective and effective antibiotic treatment in acute S. aureus infections.  相似文献   

10.
EfeUOB-like tripartite systems are widespread in bacteria and in many cases they are encoded by genes organized into iron-regulated operons. They consist of: EfeU, a protein similar to the yeast iron permease Ftrp1; EfeO, an extracytoplasmic protein of unknown function and EfeB, also an extracytoplasmic protein with heme peroxidase activity, belonging to the DyP family. Many bacterial EfeUOB systems have been implicated in iron uptake, but a prefential iron source remains undetermined. Nevertheless, in the case of Escherichia coli, the EfeUOB system has been shown to recognize heme and to allow extracytoplasmic heme iron extraction via a deferrochelation reaction. Given the high level of sequence conservations between EfeUOB orthologs, we hypothesized that heme might be the physiological iron substrate for the other orthologous systems. To test this hypothesis, we undertook characterization of the Staphylococcus aureus FepABC system. Results presented here indicate: i) that the S. aureus FepB protein binds both heme and PPIX with high affinity, like EfeB, the E. coli ortholog; ii) that it has low peroxidase activity, comparable to that of EfeB; iii) that both FepA and FepB drive heme iron utilization, and both are required for this activity and iv) that the E. coli FepA ortholog (EfeO) cannot replace FepA in FepB-driven iron release from heme indicating protein specificity in these activities. Our results show that the function in heme iron extraction is conserved in the two orthologous systems.  相似文献   

11.
Surfactant proteins (SP), originally known from human lung surfactant, are essential to proper respiratory function in that they lower the surface tension of the alveoli. They are also important components of the innate immune system. The functional significance of these proteins is currently reflected by a very large and growing number of publications. The objective goal of this study was to elucidate whether Staphylococcus aureus and Pseudomonas aeruginosa is able to express surfactant proteins. 10 different strains of S. aureus and P. aeruginosa were analyzed by means of RT-PCR, Western blot analysis, ELISA, immunofluorescence microscopy and immunoelectron microscopy. The unexpected and surprising finding revealed in this study is that different strains of S. aureus and P. aeruginosa express and secrete proteins that react with currently commercially available antibodies to known human surfactant proteins. Our results strongly suggest that the bacteria are either able to express ‘human-like’ surfactant proteins on their own or that commercially available primers and antibodies to human surfactant proteins detect identical bacterial proteins and genes. The results may reflect the existence of a new group of bacterial surfactant proteins and DNA currently lacking in the relevant sequence and structure databases. At any rate, our knowledge of human surfactant proteins obtained from immunological and molecular biological studies may have been falsified by the presence of bacterial proteins and DNA and therefore requires critical reassessment.  相似文献   

12.

Background

The objective is to estimate the incremental cost-effectiveness of the Australian National Hand Hygiene Inititiave implemented between 2009 and 2012 using healthcare associated Staphylococcus aureus bacteraemia as the outcome. Baseline comparators are the eight existing state and territory hand hygiene programmes. The setting is the Australian public healthcare system and 1,294,656 admissions from the 50 largest Australian hospitals are included.

Methods

The design is a cost-effectiveness modelling study using a before and after quasi-experimental design. The primary outcome is cost per life year saved from reduced cases of healthcare associated Staphylococcus aureus bacteraemia, with cost estimated by the annual on-going maintenance costs less the costs saved from fewer infections. Data were harvested from existing sources or were collected prospectively and the time horizon for the model was 12 months, 2011–2012.

Findings

No useable pre-implementation Staphylococcus aureus bacteraemia data were made available from the 11 study hospitals in Victoria or the single hospital in Northern Territory leaving 38 hospitals among six states and territories available for cost-effectiveness analyses. Total annual costs increased by $2,851,475 for a return of 96 years of life giving an incremental cost-effectiveness ratio (ICER) of $29,700 per life year gained. Probabilistic sensitivity analysis revealed a 100% chance the initiative was cost effective in the Australian Capital Territory and Queensland, with ICERs of $1,030 and $8,988 respectively. There was an 81% chance it was cost effective in New South Wales with an ICER of $33,353, a 26% chance for South Australia with an ICER of $64,729 and a 1% chance for Tasmania and Western Australia. The 12 hospitals in Victoria and the Northern Territory incur annual on-going maintenance costs of $1.51M; no information was available to describe cost savings or health benefits.

Conclusions

The Australian National Hand Hygiene Initiative was cost-effective against an Australian threshold of $42,000 per life year gained. The return on investment varied among the states and territories of Australia.  相似文献   

13.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) threatens public health worldwide, and epidemiologic data suggest that the Panton-Valentine Leukocidin (PVL) expressed by most CA-MRSA strains could contribute to severe human infections, particularly in young and immunocompetent hosts. PVL is proposed to induce cytolysis or apoptosis of phagocytes. However, recent comparisons of isogenic CA-MRSA strains with or without PVL have revealed no differences in human PMN cytolytic activity. Furthermore, many of the mouse studies performed to date have failed to demonstrate a virulence role for PVL, thereby provoking the question: does PVL have a mechanistic role in human infection? In this report, we evaluated the contribution of PVL to severe skin and soft tissue infection. We generated PVL mutants in CA-MRSA strains isolated from patients with necrotizing fasciitis and used these tools to evaluate the pathogenic role of PVL in vivo. In a model of necrotizing soft tissue infection, we found PVL caused significant damage of muscle but not the skin. Muscle injury was linked to induction of pro-inflammatory chemokines KC, MIP-2, and RANTES, and recruitment of neutrophils. Tissue damage was most prominent in young mice and in those strains of mice that more effectively cleared S. aureus, and was not significant in older mice and mouse strains that had a more limited immune response to the pathogen. PVL mediated injury could be blocked by pretreatment with anti-PVL antibodies. Our data provide new insights into CA-MRSA pathogenesis, epidemiology and therapeutics. PVL could contribute to the increased incidence of myositis in CA-MRSA infection, and the toxin could mediate tissue injury by mechanisms other than direct killing of phagocytes.  相似文献   

14.
Rifampicin is currently recognized as the most potent drug against Gram positive implant related infections. The use of rifampicin is limited by the emergence of bacterial resistance, which is often managed by coadministration of a second antibiotic. The purpose of this study was to determine the effectiveness of soluble rifampicin in combination with vancomycin tethered to titanium metal as a means to control bacterial growth and resistance in vitro. Bacterial growth was inhibited when the vancomycin-tethered titanium discs were treated with Staphylococcus aureus inocula of ≤2×106 CFU, however inocula greater than 2×106 CFU/disc adhered and survived. The combination of surface-tethered vancomycin with soluble rifampicin enhanced the inhibitory effect of rifampicin for an inoculum of 106 CFU/cm2 by one dilution (combination MIC of 0.008 mg/L versus 0.015 mg/L for rifampicin alone). Moreover, surface tethered vancomycin prevented the emergence of a rifampicin resistant population in an inoculum of 2×108 CFU.  相似文献   

15.
Myxobacteria are predatory and are prolific producers of secondary metabolites. Here, we tested a hypothesized role that secondary metabolite antibiotics function as weapons in predation. To test this, a Myxococcus xanthus Δta1 mutant, blocked in antibiotic TA (myxovirescin) production, was constructed. This TA mutant was defective in producing a zone of inhibition (ZOI) against Escherichia coli. This shows that TA is the major M. xanthus-diffusible antibacterial agent against E. coli. Correspondingly, the TA mutant was defective in E. coli killing. Separately, an engineered E. coli strain resistant to TA was shown to be resistant toward predation. Exogenous addition of spectinomycin, a bacteriostatic antibiotic, rescued the predation defect of the TA mutant. In contrast, against Micrococcus luteus the TA mutant exhibited no defect in ZOI or killing. Thus, TA plays a selective role on prey species. To extend these studies to other myxobacteria, the role of antibiotic corallopyronin production in predation was tested and also found to be required for Corallococcus coralloides killing on E. coli. Next, a role of TA production in myxobacterial fitness was assessed by measuring swarm expansion. Here, the TA mutant had a specific swarm rate reduction on prey lawns, and thus reduced fitness, compared to an isogenic TA+ strain. Based on these observations, we conclude that myxobacterial antibiotic production can function as a predatory weapon. To our knowledge, this is the first report to directly show a link between secondary metabolite production and predation.  相似文献   

16.
Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power   总被引:1,自引:0,他引:1  
Nothing documents better the spectacular adaptive capacity of Staphylococcus aureus than the response of this important human and animal pathogen to the introduction of antimicrobial agents into the clinical environment. The effectiveness of penicillin introduced in the early 1940s was virtually annulled within a decade because of the plasmid epidemics that spread the ss-lactamase gene through the entire species of S. aureus. In 1960 within one to two years of the introduction of penicillinase resistant ss-lactams (methicillin), methicillin resistant S. aureus (MRSA) strains were identified in clinical specimens. By the 1980s, epidemic clones of MRSA acquired multidrug resistant traits and spread worldwide to become one of the most important causative agents of hospital acquired infections. In the early 2000s, MRSA strains carrying the Tn1546 transposon-based enterococcal vancomycin resistant mechanism were identified in clinical specimens, bringing the specter of a totally resistant bacterial pathogen closer to reality. Then, in the late 1990s, just as effective hygienic and antibiotic use policies managed to bring down the frequency of MRSA in hospitals of several countries, MRSA strains began to show up in the community.  相似文献   

17.
The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL) in severe necrotizing diseases is debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-MRSA) infections and various murine disease-models. In this study, we used neutrophils isolated from different species to evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble modulins (PSMs), a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other virulence factors (such as surface proteins), induced cell death in neutrophils, which is most likely associated with the physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and premature cell death, which is different from the physiological (and programmed) cell death of neutrophils following phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major implications for the pathogenesis of CA-MRSA infections.  相似文献   

18.
An optimal host response against Staphylococcus aureus skin and soft tissue infections (SSTI) is dependent on IL-1β and IL-17 mediated abscess formation. Alpha toxin (AT), an essential virulence factor for SSTI, has been reported to damage tissue integrity; however its effect on the immune response has not been investigated. Here, we demonstrate that infection with USA300 AT isogenic mutant (Δhla), or passive immunization with an AT neutralizing mAb, 2A3, 24 h prior to infection with wild type USA300 (WT), resulted in dermonecrotic lesion size reduction, and robust neutrophil infiltration. Infiltration correlates with increase in proinflammatory cytokines and chemokines, as well as enhanced bacterial clearance relative to immunization with a negative control mAb. In addition, infection with Δhla, or with WT +2A3, resulted in an early influx of innate IL-17+γδT cells and a more rapid induction of an adaptive immune response as measured by Th1 and Th17 cell recruitment at the site of infection. These results are the first direct evidence of a role for AT in subverting the innate and adaptive immune responses during a S. aureus SSTI. Further, these effects of AT can be overcome with a high affinity anti-AT mAb resulting in a reduction in disease severity.  相似文献   

19.
Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.  相似文献   

20.
Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号