首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Janus kinases inhibitor is considered to have therapeutic potential for the treatment of oncology and immune-inflammatory diseases. Two series of 4-(2-benzofuranyl)pyrimidin-2-amine and 4-(4,5,6,7-tetrahydrofuro[3,2-c]pyridin-2-yl)pyrimidin-2-amine derivatives have been designed and synthesized. Primary SAR studies resulted in the discovery of a novel class of 4,5,6,7-tetrahydrofuro[3,2-c]pyridine based JAK2 inhibitors with higher potency (IC50 of 0.7 nM) and selectivity (>30 fold) to JAK3 kinase than tofacitinib.  相似文献   

2.
Selective inhibition of extracellular signal-regulated kinase (ERK) represents a potential approach for the treatment of cancer and other diseases; however, no selective inhibitors are currently available. Here, we describe an ERK-selective inhibitor, FR180204, and determine the structural basis of its selectivity. FR180204 inhibited the kinase activity of ERK1 and ERK2, with K(i) values 0.31 and 0.14microM, respectively. Lineweaver-Burk analysis of the binding interaction revealed that FR180204 acted as competitive inhibitor of ATP. In mink lung epithelial Mv1Lu cells, FR180204 inhibited TGFbeta-induced luciferase-expression. X-ray crystal structure analysis of the human ERK2/FR180204 complex revealed that Q105, D106, L156, and C166, which form the ATP-binding pocket on ERK, play important roles in the drug/protein interaction. These results suggest that FR180204 is an ERK-selective and cell-permeable inhibitor, and could be useful for elucidating the roles of ERK as well as for drug development.  相似文献   

3.
Spleen Tyrosine Kinase (SYK) is a well-studied enzyme with therapeutic applications in oncology and autoimmune diseases. We identified an azabenzimidazole (ABI) series of SYK inhibitors by mining activity data of 86,000 compounds from legacy biochemical assays with SYK and other homologous kinases as target enzymes. A structure-based design and hybridization approach was then used to improve the potency and kinase selectivity of the hits. Lead compound 23 from this novel ABI series has a SYK IC50 = 0.21 nM in a biochemical assay and inhibits growth of SUDHL-4 cells at a GI50 = 210 nM.  相似文献   

4.
5.
Following the discovery of imidazopyridine 1 as a potent IGF-1R tyrosine kinase inhibitor, the aniline part has been modified with the aim to optimize the properties of this series. The structure-activity relationships against IGF-1R kinase activity as well as inhibition of the hERG ion channel are discussed.  相似文献   

6.
As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 μM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50 = 160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50 = 47 nM) was a highly specific JNK inhibitor.  相似文献   

7.
We have discovered novel inhibitors of VEGFR-2 kinase with low nanomolar potency in both enzymatic and cell-based assays. Active series are heteroaryl-ketone compounds containing a central aromatic ring with either an indazolyl or indolyl keto group in the ortho orientation to the benzylic amine group (Fig. 1). The best compounds were demonstrated to be inactive against a small select panel of tyrosine and serine/threonine kinases with the exception of VEGFR-1 kinase, a close family member. In addition, the lead candidate 8 displayed acceptable exposure levels when administered orally to mice.  相似文献   

8.
Inhibition of protein kinase activity is a focus of intense drug discovery efforts in several therapeutic areas. Major challenges facing the field include understanding of the factors determining the selectivity of kinase inhibitors and the development of compounds with the desired selectivity profile. Here, we report the analysis of sequence variability among high and low affinity targets of eight different small molecule kinase inhibitors (BIRB796, Tarceva, NU6102, Gleevec, SB203580, balanol, H89, PP1). It is observed that all high affinity targets of each inhibitor are found among a relatively small number of kinases, which have similar residues at the specific positions important for binding. The findings are highly statistically significant, and allow one to exclude the majority of kinases in a genome from a list of likely targets for an inhibitor. The findings have implications for the design of novel inhibitors with a desired selectivity profile (e.g. targeted at multiple kinases), the discovery of new targets for kinase inhibitor drugs, comparative analysis of different in vivo models, and the design of "a-la-carte" chemical libraries tailored for individual kinases.  相似文献   

9.
The synthesis and biological evaluation of libraries of 8-biarylchromen-4-ones enabled the elucidation of structure–activity relationships for inhibition of the DNA-dependent protein kinase (DNA-PK), with 8-(3-(thiophen-2-yl)phenyl)chromen-4-one and 8-(3-(thiophen-3-yl)phenyl)chromen-4-one being especially potent inhibitors.  相似文献   

10.
We accomplished divergent synthesis of potent kinase inhibitor BAY 61-3606 (1) and 27 derivatives via conjugation of imidazo[1,2-c]pyrimidine and indole ring compounds with aromatic (including pyridine) derivatives by means of palladium-catalyzed cross-coupling reaction. Spleen tyrosine kinase (Syk) and germinal center kinase (Gck, MAP4K2) inhibition assays showed that some of the synthesized compounds were selective Gck inhibitors.  相似文献   

11.
Autophagy is an important homoeostatic mechanism for the lysosomal degradation of protein aggregates and damaged cytoplasmic components. Recent studies suggest that autophagy which is induced by TGF-β1 suppresses kidney fibrosis in renal tubular epithelial cells (RTECs) of obstructed kidneys. Sphingosine kinase 1(SK1), converting sphingosine into endogenous sphingosine-1-phosphate (S1P), was shown to modulate autophagy and involved in the processes of fibrotic diseases. Since SK1 activity is also up-regulated by TGF-β1, we explored its effect on the induction of autophagy and development of renal fibrosis in this study. In vitro, SK1 expression and activity were markedly increased by TGF-β1 stimulation in a time and concentration dependent manner, and concomitant changes in autophagic response were observed in HK-2 cells. Further, knockdown of SK-1 led to a decrease of autophagy whereas overexpression of SK1 caused a greater induction of autophagy. In addition, overexpression of SK1 resulted in decreased of mature TGF-β levels through autophagic degradation. In vivo, SK1 enzymatic activity and autophagic response were both up-regulated in a mouse model of kidney fibrosis induced by unilateral ureteral obstruction (UUO); meanwhile, increased of mature TGF-β1 and deposition of extracellular matrix (ECM) were observed in tubulointerstitial areas compared with sham-operated mice. However, aggravation of renal fibrosis was detected when SK1 inhibitor PF-543 was applied to suppress SK1 enzymatic activity in UUO mice. At the same time, autophagy was also inhibited by PF-543. Thus, our findings suggest that SK1 activation is renoprotective via induction of autophagy in the fibrotic process.  相似文献   

12.
Maternal embryonic leucine zipper kinase (MELK) is involved in several key cellular processes and displays increased levels of expression in numerous cancer classes (colon, breast, brain, ovary, prostate and lung). Although no selective MELK inhibitors have yet been approved, increasing evidence suggest that inhibition of MELK would constitute a promising approach for cancer therapy. A weak high-throughput screening hit (17, IC50?≈?5?μM) with lead-like properties was optimized for MELK inhibition. The early identification of a plausible binding mode by molecular modeling offered guidance in the choice of modifications towards compound 52 which displayed a 98?nM IC50. A good selectivity profile was achieved for a representative member of the series (29) in a 486 protein kinase panel. Future elaboration of 52 has the potential to deliver compounds for further development with chemotherapeutic aims.  相似文献   

13.
Angiopoietins and Tie2 receptor were recently identified as an endothelial cell-specific ligand-receptor system that is critical for vascular development and postnatal pathologic angiogenesis by mediating vascular integrity. In this study, we identified a series of small-molecule Tie2 inhibitors, which blocked Ang1-induced Tie2 autophosphorylation and downstream signaling with an IC(50) value at 0.3 microM. Further optimization yields improved selectivity, aqueous solubility, microsomal stability and cytochrome P450 profile for one of the compounds (compound 7). Both compound 1 and compound 7 inhibit endothelial cell tube formation. Furthermore, in a rat model of Matrigel-induced choroidal neovascularization, compound 7 significantly diminished aberrant vessel growth. Our findings demonstrate a potential clinical benefit by specifically targeting Tie2-mediated angiogenic disorders.  相似文献   

14.
The synthesis and preliminary studies of the SAR of novel 3,5-diarylazole inhibitors of Protein Kinase D (PKD) are reported. Notably, optimized compounds in this class have been found to be active in cellular assays of phosphorylation-dependant HDAC5 nuclear export, orally bioavailable, and highly selective versus a panel of additional putative histone deacetylase (HDAC) kinases. Therefore these compounds could provide attractive tools for the further study of PKD / HDAC5 signaling.  相似文献   

15.
Reactivation of the wild-type p53 pathway is one key goal aimed at developing targeted therapeutics in the cancer research field. Although most p53 protein kinases form ‘p53-activating’ signals, there are few kinases whose action can contribute to the inhibition of p53, as Casein kinase 1 (CK1) and Checkpoint kinase 1 (CHK1). Here we report on a pyrazolo-pyridine analogue showing activity against both CK1 and CHK1 kinases that lead to p53 pathway stabilisation, thus having pharmacological similarities to the p53-activator Nutlin-3. These data demonstrate the emerging potential utility of multivalent kinase inhibitors.  相似文献   

16.
The synthesis and SAR of a series of novel pyrazolo-quinazolines as potent and selective MPS1 inhibitors are reported. We describe the optimization of the initial hit, identified by screening the internal library collection, into an orally available, potent and selective MPS1 inhibitor.  相似文献   

17.
Leucine-rich repeat kinase 2 (LRRK2) has been suggested as a potential therapeutic target for Parkinson’s disease. Herein we report the discovery of 5-substituent-N-arylbenzamide derivatives as novel LRRK2 inhibitors. Extensive SAR study led to the discovery of compounds 8e, which demonstrated potent LRRK2 inhibition activity, high selectivity across the kinome, good brain exposure, and high oral bioavailability.  相似文献   

18.
A new series of IGF-1R inhibitors related to hydantoins were identified from a lead originating from HTS. Their noncompetitive property as well as their slow binding characteristics provided a series of compounds with unique selectivity and excellent cellular activities.  相似文献   

19.
5-Hydroxytryptamine1A (5-HT1A) receptor proteins were identified by a novel approach in which photoaffinity labeling technique was used in conjunction with affinity column chromatography. 5-HT1A receptors were solubilized from bovine frontal cortical membranes with 0.3% digitonin and 0.1% Nonidet P-40, and bound effectively to 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP)-coupled Affi-Gel 10 in a time-dependent manner. PAPP was shown previously to be a selective ligand for the 5-HT1A receptor. Two protein bands with molecular masses of approximately 55,000 and 38,000 daltons revealed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were eluted from the affinity column with either 1 mM 5-HT or 1 microM [3H]1-[2-(4-azidophenyl)ethyl]-4-(3-trifluoromethyl-phenyl)piperazine ([3H]p-azido-PAPP). [3H]p-Azido-PAPP is a selective photoaffinity labeling probe for the 5-HT1A receptor. The intensity of these two protein bands and the incorporation of [3H]p-azido-PAPP into these two proteins decreased significantly when the solubilized fraction was preincubated with excess 5-HT or PAPP (saturating all 5-HT1A receptors) prior to affinity column chromatography. These results suggest strongly that these two proteins are related to the 5-HT1A receptor protein. The isoelectric points of the photolabeled 5-HT1A receptor proteins were 6.0 and 6.5.  相似文献   

20.
Yes1 kinase has been implicated as a potential therapeutic target in a number of cancers including melanomas, breast cancers, and rhabdomyosarcomas. Described here is the development of a robust and miniaturized biochemical assay for Yes1 kinase that was applied in a high throughput screen (HTS) of kinase-focused small molecule libraries. The HTS provided 144 (17% hit rate) small molecule compounds with IC50 values in the sub-micromolar range. Three of the most potent Yes1 inhibitors were then examined in a cell-based assay for inhibition of cell survival in rhabdomyosarcoma cell lines. Homology models of Yes1 were generated in active and inactive conformations, and docking of inhibitors supports binding to the active conformation (DFG-in) of Yes1. This is the first report of a large high throughput enzymatic activity screen for identification of Yes1 kinase inhibitors, thereby elucidating the polypharmacology of a variety of small molecules and clinical candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号