首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During yeast sporulation, a forespore membrane (FSM) initiates at each spindle-pole body and extends to form the spore envelope. We used Schizosaccharomyces pombe to investigate the role of septins during this process. During the prior conjugation of haploid cells, the four vegetatively expressed septins (Spn1, Spn2, Spn3, and Spn4) coassemble at the fusion site and are necessary for its normal morphogenesis. Sporulation involves a different set of four septins (Spn2, Spn5, Spn6, and the atypical Spn7) that does not include the core subunits of the vegetative septin complex. The four sporulation septins form a complex in vitro and colocalize interdependently to a ring-shaped structure along each FSM, and septin mutations result in disoriented FSM extension. The septins and the leading-edge proteins appear to function in parallel to orient FSM extension. Spn2 and Spn7 bind to phosphatidylinositol 4-phosphate [PtdIns(4)P] in vitro, and PtdIns(4)P is enriched in the FSMs, suggesting that septins bind to the FSMs via this lipid. Cells expressing a mutant Spn2 protein unable to bind PtdIns(4)P still form extended septin structures, but these structures fail to associate with the FSMs, which are frequently disoriented. Thus, septins appear to form a scaffold that helps to guide the oriented extension of the FSM.Yeast sporulation is a developmental process that involves multiple, sequential events that need to be tightly coordinated (59, 68). In the fission yeast Schizosaccharomyces pombe, when cells of opposite mating type (h+ and h) are mixed and shifted to conditions of nitrogen starvation, cell fusion and karyogamy occur to form a diploid zygote, which then undergoes premeiotic DNA replication, the two meiotic divisions, formation of the spore envelopes (comprising the plasma membrane and a specialized cell wall), and maturation of the spores (74, 81). At the onset of meiosis II, precursors of the spore envelopes, the forespore membranes (FSMs), are formed by the fusion of vesicles at the cytoplasmic surface of each spindle-pole body (SPB) and then extend to engulf the four nuclear lobes (the nuclear envelope does not break down during meiosis), thus capturing the haploid nuclei, along with associated cytoplasm and organelles, to form the nascent spores (55, 68, 81). How the FSMs recognize and interact with the nuclear envelope, extend in a properly oriented manner, and close to form uniformly sized spherical spores is not understood, and study of this model system should also help to elucidate the more general question of how membranes obtain their shapes in vivo.It has been shown that both the SPB and the vesicle trafficking system play important roles in the formation and development of the FSM and of its counterpart in the budding yeast Saccharomyces cerevisiae, the prospore membrane (PSM). In S. pombe, the SPB changes its shape from a compact dot to a crescent at metaphase of meiosis II (26, 29), and its outer plaque acquires meiosis-specific components such as Spo2, Spo13, and Spo15 (30, 57, 68). This modified outer plaque is required for the initiation of FSM assembly. In S. cerevisiae, it is well established that various secretory (SEC) gene products are required for PSM formation (58, 59). Similarly, proteins presumably involved in the docking and/or fusion of post-Golgi vesicles and organelles in S. pombe, such as the syntaxin-1A Psy1, the SNAP-25 homologue Sec9, and the Rab7 GTPase homologue Ypt7, are also required for proper FSM extension (34, 53, 54). Consistent with this hypothesis, Psy1 disappears from the plasma membrane upon exit from meiosis I and reappears in the nascent FSM.Phosphoinositide-mediated membrane trafficking also contributes to the development of the FSM. Pik3/Vps34 is a phosphatidylinositol 3-kinase whose product is phosphatidylinositol 3-phosphate [PtdIns(3)P] (35, 72). S. pombe cells lacking this protein exhibit defects in various steps of FSM formation, such as aberrant starting positions for extension, disoriented extension and/or failure of closure, and the formation of spore-like bodies near, rather than surrounding, the nuclei, suggesting that Pik3 plays multiple roles during sporulation (61). The targets of PtdIns(3)P during sporulation appear to include two sorting nexins, Vps5 and Vps17, and the FYVE domain-containing protein Sst4/Vps27. vps5Δ and vps17Δ mutant cells share some of the phenotypes of pik3Δ cells (38). sst4Δ cells also share some of the phenotypes of pik3Δ cells but are distinct from vps5Δ and vps17Δ cells, consistent with the hypothesis that Pik3 has multiple roles during sporulation (62).Membrane trafficking processes alone do not seem sufficient to explain how the FSMs and PSMs extend around and engulf the nuclei, suggesting that some other mechanism(s) must regulate and orient FSM/PSM extension. The observation that the FSM is attached to the SPB until formation of the immature spore is complete (68) suggests that the SPB may regulate FSM extension. In addition, the leading edge of the S. cerevisiae PSM is coated with a complex of proteins (the LEPs) that appear to be involved in PSM extension (51, 59). S. pombe Meu14 also localizes to the leading edge of the FSM, and deletion of meu14 causes aberrant FSM formation in addition to a failure in SPB modification (60). However, it has remained unclear whether the SPB- and LEP-based mechanisms are sufficient to account for the formation of closed FSMs and PSMs of proper size and position (relative to the nuclear envelope), and evidence from S. cerevisiae has suggested that the septin proteins may also be involved.The septins are a conserved family of GTP-binding proteins that were first identified in S. cerevisiae by analysis of the cytokinesis-defective cdc3, cdc10, cdc11, and cdc12 mutants (41). Cdc3, Cdc10, Cdc11, and Cdc12 are related to each other in sequence and form an oligomeric complex that localizes to a ring in close apposition to the plasma membrane at the mother-bud neck in vegetative cells (12, 20, 25, 41, 47, 77). The septin ring appears to be filamentous in vivo (12), and indeed, the septins from both yeast (11, 20) and metazoans (31, 36, 69) can form filaments in vitro. The yeast septin ring appears to form a scaffold for the localization and organization of a wide variety of other proteins (8, 22), and it forms a diffusion barrier that constrains movement of membrane proteins through the neck region (7, 8, 73). In metazoan cells, the septins are involved in cytokinesis but are also implicated in a variety of other cellular processes, such as vesicular transport, organization of the actin and microtubule cytoskeletons, and oncogenesis (27, 70).In S. cerevisiae, a fifth septin (Shs1) is also expressed in vegetative cells, but the remaining two septin genes, SPR3 and SPR28, are expressed at detectable levels only during sporulation (15, 17). In addition, at least some of the vegetatively expressed septins are also present in sporulating cells (17, 48), and one of them (Cdc10) is expressed at much higher levels there than in vegetative cells (32). The septins present during sporulation are associated with the PSM (15, 17, 48, 51), and their normal organization there depends on the Gip1-Glc7 protein phosphatase complex (71). However, it has been difficult to gain insight into the precise roles of the septins during sporulation in S. cerevisiae (59), because some septins are essential for viability during vegetative growth, and the viable mutants have only mild phenotypes during sporulation (15, 17), possibly because of functional redundancy among the multiple septins.S. pombe seemed likely to provide a better opportunity for investigating the role of septins during spore formation. There are seven septin genes (spn1+ to spn7+) in this organism (23, 41, 63). Four of these genes (spn1+ to spn4+) are expressed in vegetative cells, and their products form a hetero-oligomeric complex that assembles during cytokinesis into a ring at the division site (2, 3, 10, 76, 79). The septin ring is important for proper targeting of endoglucanases to the division site (44), and septin mutants show a corresponding delay in cell separation (10, 41, 44, 76). However, even the spn1Δ spn2Δ spn3Δ spn4Δ quadruple mutant is viable and grows nearly as rapidly as the wild type (our unpublished results), a circumstance that greatly facilitates studies of the septins'' role during sporulation.spn5+, spn6+, and spn7+ are expressed at detectable levels only during sporulation (1, 45, 78; our unpublished results), and spn2+, like its orthologue CDC10 (see above), is strongly induced (45), but the roles of the S. pombe septins in sporulation have not previously been investigated. In this study, we show that the septins are important for the orientation of FSM extension, suggesting that the septins may have a more general role in dynamic membrane organization and shape determination.  相似文献   

2.
During the course of infection, transmitted HIV-1 isolates that initially use CCR5 can acquire the ability to use CXCR4, which is associated with an accelerated progression to AIDS. Although this coreceptor switch is often associated with mutations in the stem of the viral envelope (Env) V3 loop, domains outside V3 can also play a role, and the underlying mechanisms and structural basis for how X4 tropism is acquired remain unknown. In this study we used a V3 truncated R5-tropic Env as a starting point to derive two X4-tropic Envs, termed ΔV3-X4A.c5 and ΔV3-X4B.c7, which took distinct molecular pathways for this change. The ΔV3-X4A.c5 Env clone acquired a 7-amino-acid insertion in V3 that included three positively charged residues, reestablishing an interaction with the CXCR4 extracellular loops (ECLs) and rendering it highly susceptible to the CXCR4 antagonist AMD3100. In contrast, the ΔV3-X4B.c7 Env maintained the V3 truncation but acquired mutations outside V3 that were critical for X4 tropism. In contrast to ΔV3-X4A.c5, ΔV3-X4B.c7 showed increased dependence on the CXCR4 N terminus (NT) and was completely resistant to AMD3100. These results indicate that HIV-1 X4 coreceptor switching can involve (i) V3 loop mutations that establish interactions with the CXCR4 ECLs, and/or (ii) mutations outside V3 that enhance interactions with the CXCR4 NT. The cooperative contributions of CXCR4 NT and ECL interactions with gp120 in acquiring X4 tropism likely impart flexibility on pathways for viral evolution and suggest novel approaches to isolate these interactions for drug discovery.For human immunodeficiency virus type I (HIV-1) to enter a target cell, the gp120 subunit of the viral envelope glycoprotein (Env) must engage CD4 and a coreceptor on the cell surface. Although numerous coreceptors have been identified in vitro, the two most important coreceptors in vivo are the CCR5 (3, 11, 19, 22, 24) and CXCR4 (27) chemokine receptors. HIV-1 variants that can use only CCR5 (R5 viruses) are critical for HIV-1 transmission and predominate during the early stages of infection (86, 90). The importance of CCR5 for HIV-1 transmission is underscored by the fact that individuals bearing a homozygous 32-bp deletion in the CCR5 gene (ccr5-Δ32) are largely resistant to HIV-1 infection (15, 49, 84). Although R5 viruses typically persist into late disease stages, viruses that can use CXCR4, either alone (X4 viruses) or in addition to CCR5 (R5X4 viruses), emerge in approximately 50% of individuals infected with subtype B or D viruses (12, 39, 44). Although not required for disease progression, the appearance of X4 and/or R5X4 viruses is associated with a more rapid depletion of CD4+ cells in peripheral blood and faster progression to AIDS (12, 44, 77, 86). However, it remains unclear whether these viruses are a cause or a consequence of accelerated CD4+ T cell decline (57). The emergence of CXCR4-using viruses has also complicated the use of small-molecule CCR5 antagonists as anti-HIV-therapeutics as these compounds can select for the outgrowth of X4 or R5X4 escape variants (93).Following triggering by CD4, gp120 binds to a coreceptor via two principal interactions: (i) the bridging sheet, a four-stranded antiparallel beta sheet that connects the inner and outer domains of gp120, together with the base of the V3 loop, engages the coreceptor N terminus (NT); and (ii) more distal regions of V3 interact with the coreceptor extracellular loops (ECLs) (13, 14, 36-38, 43, 59, 60, 78, 79, 88). Although both the NT and ECL interactions are important for coreceptor binding and entry, their relative contributions vary among different HIV-1 strains (23). For example, V3 interactions with the ECLs, particularly ECL2, serve a dominant role in CXCR4 utilization (7, 21, 50, 63, 72), while R5 viruses exhibit a more variable use of CCR5 domains, with the NT interaction being particularly important (4, 6, 20, 67, 83). Although V3 is the primary determinant of coreceptor preference (34), it is unclear how specificity for CCR5 and/or CXCR4 is determined, and, in particular, it is unknown how X4 tropism is acquired. Several reports have shown that the emergence of X4 tropism correlates with the acquisition of positively charged residues in the V3 stem (17, 29, 87), particularly at positions 11, 24, and 25 (8, 17, 28, 29, 42, 75), raising the possibility that these mutations directly or indirectly mediate interactions with negatively charged residues in the CXCR4 ECLs. However, Env domains outside V3, including V1/V2 (9, 32, 45, 46, 61, 64, 65, 80, 95) and even gp41 (40), can also contribute to coreceptor switching, and it is unclear mechanistically or structurally how X4 tropism is determined.We previously derived a replication-competent variant of the R5X4 HIV-1 clone R3A that contained a markedly truncated V3 loop (47). This Env was generated by introducing a mutation termed ΔV3(9,9), which deleted the distal 15 amino acids of V3. The ΔV3(9,9) mutation selectively ablated X4 tropism but left R5 tropism intact, consistent with the view that an interaction between the distal half of V3 and the ECLs is critical for CXCR4 usage (7, 21, 43, 50, 59, 60, 63, 72). This V3-truncated virus provided a unique opportunity to address whether CXCR4 utilization could be regained on a background in which this critical V3-ECL interaction had been ablated and, if so, by what mechanism. Here, we characterize two novel X4 variants of R3A ΔV3(9,9) derived by adapting this virus to replicate in CXCR4+ CCR5 SupT1 cells. We show that R3A ΔV3(9,9) could indeed reacquire X4 tropism but through two markedly different mechanisms. One X4 variant, designated ΔV3-X4A, acquired changes in the V3 remnant that reestablished an interaction with the CXCR4 ECLs; the other, ΔV3-X4B, acquired changes outside V3 that engendered interactions with the CXCR4 NT. These divergent evolutionary pathways led to profound differences in sensitivity to the CXCR4 antagonist AMD3100, with ΔV3-X4A showing increased sensitivity relative to R3A and with ΔV3-X4B becoming completely resistant. These findings demonstrate the contributions that interactions with distinct coreceptor regions have in mediating tropism and drug sensitivity and illustrate how HIV''s remarkable evolutionary plasticity in adapting to selection pressures can be exploited to better understand its biological potential.  相似文献   

3.
4.
Herpes simplex virus type 1 (HSV-1)-induced cell fusion is mediated by viral glycoproteins and other membrane proteins expressed on infected cell surfaces. Certain mutations in the carboxyl terminus of HSV-1 glycoprotein B (gB) and in the amino terminus of gK cause extensive virus-induced cell fusion. Although gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-induced cell fusion remains elusive. To delineate the amino-terminal domains of gK involved in virus-induced cell fusion, the recombinant viruses gKΔ31-47, gKΔ31-68, and gKΔ31-117, expressing gK carrying in-frame deletions spanning the amino terminus of gK immediately after the gK signal sequence (amino acids [aa] 1 to 30), were constructed. Mutant viruses gKΔ31-47 and gKΔ31-117 exhibited a gK-null (ΔgK) phenotype characterized by the formation of very small viral plaques and up to a 2-log reduction in the production of infectious virus in comparison to that for the parental HSV-1(F) wild-type virus. The gKΔ31-68 mutant virus formed substantially larger plaques and produced 1-log-higher titers than the gKΔ31-47 and gKΔ31-117 mutant virions at low multiplicities of infection. Deletion of 28 aa from the carboxyl terminus of gB (gBΔ28syn) caused extensive virus-induced cell fusion. However, the gBΔ28syn mutation was unable to cause virus-induced cell fusion in the presence of the gKΔ31-68 mutation. Transient expression of a peptide composed of the amino-terminal 82 aa of gK (gKa) produced a glycosylated peptide that was efficiently expressed on cell surfaces only after infection with the HSV-1(F), gKΔ31-68, ΔgK, or UL20-null virus. The gKa peptide complemented the gKΔ31-47 and gKΔ31-68 mutant viruses for infectious-virus production and for gKΔ31-68/gBΔ28syn-mediated cell fusion. These data show that the amino terminus of gK modulates gB-mediated virus-induced cell fusion and virion egress.Herpes simplex virus type 1 (HSV-1) specifies at least 11 virally encoded glycoproteins, as well as several nonglycosylated and lipid-anchored membrane-associated proteins, which serve important functions in virion infectivity and virus spread. Although cell-free enveloped virions can efficiently spread viral infection, virions can also spread by causing cell fusion of adjacent cellular membranes. Virus-induced cell fusion, which is caused by viral glycoproteins expressed on infected cell surfaces, enables transmission of virions from one cell to another, avoiding extracellular spaces and exposure of free virions to neutralizing antibodies (reviewed in reference 56). Most mutations that cause extensive virus-induced cell-to-cell fusion (syncytial or syn mutations) have been mapped to at least four regions of the viral genome: the UL20 gene (5, 42, 44); the UL24 gene (37, 58); the UL27 gene, encoding glycoprotein B (gB) (9, 51); and the UL53 gene, coding for gK (7, 15, 35, 53, 54, 57).Increasing evidence suggests that virus-induced cell fusion is mediated by the concerted action of glycoproteins gD, gB, and gH/gL. Recent studies have shown that gD interacts with both gB and gH/gL (1, 2). Binding of gD to its cognate receptors, including Nectin-1, HVEM, and others (12, 29, 48, 59, 60, 62, 63), is thought to trigger conformation changes in gH/gL and gB that cause fusion of the viral envelope with cellular membranes during virus entry and virus-induced cell fusion (32, 34). Transient coexpression of gB, gD, and gH/gL causes cell-to-cell fusion (49, 68). However, this phenomenon does not accurately model viral fusion, because other viral glycoproteins and membrane proteins known to be important for virus-induced cell fusion are not required (6, 14, 31). Specifically, gK and UL20 were shown to be absolutely required for virus-induced cell fusion (21, 46). Moreover, syncytial mutations within gK (7, 15, 35, 53, 54, 57) or UL20 (5, 42, 44) promote extensive virus-induced cell fusion, and viruses lacking gK enter more slowly than wild-type virus into susceptible cells (25). Furthermore, transient coexpression of gK carrying a syncytial mutation with gB, gD, and gH/gL did not enhance cell fusion, while coexpression of the wild-type gK with gB, gD, and gH/gL inhibited cell fusion (3).Glycoproteins gB and gH are highly conserved across all subfamilies of herpesviruses. gB forms a homotrimeric type I integral membrane protein, which is N glycosylated at multiple sites within the polypeptide. An unusual feature of gB is that syncytial mutations that enhance virus-induced cell fusion are located exclusively in the carboxyl terminus of gB, which is predicted to be located intracellularly (51). Single-amino-acid substitutions within two regions of the intracellular cytoplasmic domain of gB were shown to cause syncytium formation and were designated region I (amino acid [aa] positions 816 and 817) and region II (aa positions 853, 854, and 857) (9, 10, 28, 69). Furthermore, deletion of 28 aa from the carboxyl terminus of gB, disrupting the small predicted alpha-helical domain H17b, causes extensive virus-induced cell fusion as well as extensive glycoprotein-mediated cell fusion in the gB, gD, and gH/gL transient-coexpression system (22, 49, 68). The X-ray structure of the ectodomain of gB has been determined and is predicted to assume at least two major conformations, one of which may be necessary for the fusogenic properties of gB. Therefore, perturbation of the carboxyl terminus of gB may alter the conformation of the amino terminus of gB, thus favoring one of the two predicted conformational structures that causes membrane fusion (34).The UL53 (gK) and UL20 genes encode multipass transmembrane proteins of 338 and 222 aa, respectively, which are conserved in all alphaherpesviruses (15, 42, 55). Both proteins have multiple sites where posttranslational modification can occur; however, only gK is posttranslationally modified by N-linked carbohydrate addition (15, 35, 55). The specific membrane topologies of both gK and UL20 protein (UL20p) have been predicted and experimentally confirmed using epitope tags inserted within predicted intracellular and extracellular domains (18, 21, 44). Syncytial mutations in gK map predominantly within extracellular domains of gK and particularly within the amino-terminal portion of gK (domain I) (18), while syncytial mutations of UL20 are located within the amino terminus of UL20p, shown to be located intracellularly (44). A series of recent studies have shown that HSV-1 gK and UL20 functionally and physically interact and that these interactions are necessary for their coordinate intracellular transport and cell surface expression (16, 18, 21, 26, 45). Specifically, direct protein-protein interactions between the amino terminus of HSV-1 UL20 and gK domain III, both of which are localized intracellularly, were recently demonstrated by two-way coimmunoprecipitation experiments (19).According to the most prevalent model for herpesvirus intracellular morphogenesis, capsids initially assemble within the nuclei and acquire a primary envelope by budding into the perinuclear spaces. Subsequently, these virions lose their envelope through fusion with the outer nuclear lamellae. Within the cytoplasm, tegument proteins associate with the viral nucleocapsid and final envelopment occurs by budding of cytoplasmic capsids into specific trans-Golgi network (TGN)-associated membranes (8, 30, 47, 70). Mature virions traffic to cell surfaces, presumably following the cellular secretory pathway (33, 47, 61). In addition to their significant roles in virus-induced cell fusion, gK and UL20 are required for cytoplasmic virion envelopment. Viruses with deletions in either the gK or the UL20 gene are unable to translocate from the cytoplasm to extracellular spaces and accumulated as unenveloped virions in the cytoplasm (5, 15, 20, 21, 26, 35, 36, 38, 44, 55). Current evidence suggests that the functions of gK and UL20 in cytoplasmic virion envelopment and virus-induced cell fusion are carried out by different, genetically separable domains of UL20p. Specifically, UL20 mutations within the amino and carboxyl termini of UL20p allowed cotransport of gK and UL20p to cell surfaces, virus-induced cell fusion, and TGN localization, while effectively inhibiting cytoplasmic virion envelopment (44, 45).In this paper, we demonstrate that the amino terminus of gK expressed as a free peptide of 82 aa (gKa) is transported to infected cell surfaces by viral proteins other than gK or UL20p and facilitates virus-induced cell fusion caused by syncytial mutations in the carboxyl terminus of gB. Thus, functional domains of gK can be genetically separated, as we have shown previously (44, 45), as well as physically separated into different peptide portions that retain functional activities of gK. These results are consistent with the hypothesis that the amino terminus of gK directly or indirectly interacts with and modulates the fusogenic properties of gB.  相似文献   

5.
6.
The glyoxylate and methylcitrate cycles are involved in the metabolism of two- or three-carbon compounds in fungi. To elucidate the role(s) of these pathways in Gibberella zeae, which causes head blight in cereal crops, we focused on the functions of G. zeae orthologs (GzICL1 and GzMCL1) of the genes that encode isocitrate lyase (ICL) and methylisocitrate lyase (MCL), respectively, key enzymes in each cycle. The deletion of GzICL1 (ΔGzICL1) caused defects in growth on acetate and in perithecium (sexual fruiting body) formation but not in virulence on barley and wheat, indicating that GzICL1 acts as the ICL of the glyoxylate cycle and is essential for self-fertility in G. zeae. In contrast, the ΔGzMCL1 strains failed to grow on propionate but exhibited no major changes in other traits, suggesting that GzMCL1 is required for the methylcitrate cycle in G. zeae. Interestingly, double deletion of both GzICL1 and GzMCL1 caused significantly reduced virulence on host plants, indicating that both GzICL1 and GzMCL1 have redundant functions for plant infection in G. zeae. Thus, both GzICL1 and GzMCL1 may play important roles in determining major mycological and pathological traits of G. zeae by participating in different metabolic pathways for the use of fatty acids.During the infection process, pathogenic fungi usually encounter nutrient deprivation in the host before gaining access to sufficient nutrients for successful colonization of the living tissue. To cope with a nutrient-limited environment, fungal pathogens seem to rely mostly on fatty acid metabolism for both energy supply and biosynthesis of essential molecules (29). The ability of fungi to use fatty acids as a carbon source for growth is based on the glyoxylate cycle. Fungal pathogens have been proposed to employ the glyoxylate bypass for the use of acetyl coenzyme A (CoA) units produced by the β-oxidation of even-chain-length fatty acids, probably available from host cell membranes or the lipid reservoir inside the fungal spore (7, 12, 20, 27, 28, 41, 44, 46). Recent studies suggest that the glyoxylate pathway plays an important role in fungal virulence toward both plant and animal hosts (12, 20, 27, 44, 46). The key enzymes of the glyoxylate pathway, such as isocitrate lyase (ICL), which catalyzes the cleavage of isocitrate to glyoxylate and succinate, and malate synthase, which mediates the condensation of acetyl-CoA and glyoxylate into malate, are strongly induced within the host (16, 27, 41, 44). Moreover, disruption of genes encoding either of these enzymes causes severely reduced virulence of fungal phytopathogens, including Leptosphaeria maculans (20), Magnaporthe grisea (46), Stagonospora nodorum (44), and Colletotrichum lagenarium (2), and the animal pathogen Candida albicans (27). In contrast, these glyoxylate cycle enzymes have been known to be dispensable in invasive aspergillosis caused by Aspergillus fumigatus (38, 43).During fatty acid and amino acid catabolism by fungi, propionyl-CoA can be generated along with acetyl-CoA, particularly from the breakdown of odd-chain-length fatty acids or of the amino acids valine, isoleucine, and methionine (14). Therefore, fungal pathogens may need to use or remove propionyl-CoA during the infection process because it is toxic to fungi. In fungi, propionyl-CoA is metabolized via the methylcitrate cycle, in which propionyl-CoA is oxidized to pyruvate in four enzymatic steps (4, 5, 6, 19, 30, 31, 40, 49, 50). Recently, the importance of the methylcitrate cycle in fungal virulence was demonstrated in A. fumigatus: a mutant defective in methylcitrate synthase, the first enzyme of this cycle, displayed attenuated virulence in mice and insects (19, 31). However, the role of methylisocitrate lyase (MCL), which catalyzes the last reaction in the methylcitrate cycle (i.e., the cleavage of methylisocitrate into pyruvate and succinate) in fungal virulence, has not been determined, although deletion of the MCL gene inhibits hyphal growth and conidiation in Aspergillus nidulans (4). The protein sequences of several fungal MCLs show high similarity to fungal ICLs of the glyoxylate cycle (4, 30). In the pathogenic bacterium Mycobacterium tuberculosis, the methylcitrate cycle, only when working together with the glyoxylate cycle, is involved in virulence as well as fatty acid metabolism and intracellular growth (34, 35).Here, we focused on the roles of these two cycles during disease development caused by the devastating cereal pathogen Gibberella zeae (anamorph: Fusarium graminearum). G. zeae is a ubiquitously distributed ascomycete fungus that causes major disease in cereal crops such as corn, wheat, barley, and rice (33). Severe epidemics of these diseases result in serious economic consequences due to yield losses and contamination by fungal mycotoxins (32, 33). Wind-disseminated sexual spores (ascospores), which are produced in perithecia formed on plant debris, can infect plant spikes during anthesis (13, 39, 45). Detailed studies of the G. zeae infection process on wheat and barley heads have shown that fungal hyphae on the inner surfaces of the spike penetrate epicarp cells through pits or pores and grow into the caryopses through the pericarp (21). Thus, the glyoxylate cycle, either alone or in conjunction with the methylcitrate cycle, is likely employed by G. zeae during the infection process, as in other fungus-plant interactions (20, 46). G. zeae genome searches have identified orthologs of fungal ICL and MCL genes, designated GzICL1 and GzMCL1, respectively. Here, we performed functional analyses of these genes to provide new insight into their importance in lipid metabolism during the G. zeae infection process in host plants.  相似文献   

7.
8.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

9.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

10.
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded β-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the ΔopnS strain. Coinjection of the wild-type and ΔopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or ΔopnS strain were colonized by the wild-type strain. In addition, the ΔopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The ΔopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.The bacterium Xenorhabdus nematophila forms a mutualistic association with the entomopathogenic nematode Steinernema carpocapsae (2). The nonfeeding infective juvenile form of the nematode (IJ) exists in the soil and carries the bacteria in a specialized receptacle region in the anterior intestine (4, 39). The IJ invades susceptible insect species and enters the hemocoel, where exposure to insect hemolymph stimulates the movement of bacteria down the intestine and out of the anus (36, 39). Together, the nematode and bacteria kill the insect host. X. nematophila not only helps to kill the insect but also promotes bioconversion of host macromolecules and tissues to provide nutrients for nematode reproduction and secretes diverse antimicrobial products to suppress competition for the nutrient resources of the insect cadaver (11, 13, 18, 19, 38). In turn, the nematode vectors X. nematophila to new insect hosts and protects it from the competitive environment of the soil. Colonization of the nematode receptacle is predominantly a monoculture process that is initiated by a single cell followed by bacterial proliferation (24, 39). The level of colonization varies from a few cells to several hundreds per nematode and is higher in nematodes reproducing in insects than on bacterial lawns, suggesting that the insect environment provides additional nutrients for bacterial growth (16, 39).Hydrophilic nutrients and antibiotics passively diffuse across the outer membrane of gram-negative bacteria through general porins and substrate-specific channels (17, 29). The most extensively studied general porins, OmpF and OmpC of Escherichia coli (30), are 16-stranded β-barrel proteins that are reciprocally regulated by changes in external osmolarity (12, 21, 41). Although the flow rate through OmpF is greater than OmpC (28), comparison of the resolved crystal structures does not reveal significant physiochemical differences between the two porins (3). The biological significance of the differential regulation of porins with distinct functional properties remains unclear. The major outer membrane protein of X. nematophila, OpnP, was shown to be produced at high levels in exponentially growing cells and is a homologue of OmpF and OmpC (14). OpnP production was not affected by changes in medium osmolarity, and the flow rate measured for the OpnP porin was more similar to the restrictive porin OmpC than to the more permissive OmpF porin (3). As cells transitioned to stationary phase, de novo synthesis of OpnP decreased, while the synthesis of the outer membrane protein, designated OpnS, increased (15, 22).Porin function and regulation have been studied in both pathogenic and symbiotic bacteria. In Vibrio cholerae two well-studied porins, OmpU and OmpT, that possess distinct functional properties have been shown to be differentially regulated (37). OmpU confers resistance to sodium deoxycholate (DC), a major component of bile, as well as polymixin B, detergents, and antimicrobial peptides, while the expression of OmpT alone sensitizes the cell to DC (26, 33). OmpU was thought to be expressed when V. cholerae colonizes the intestine, suggesting that it was required for host colonization (33); however, subsequent findings indicated that neither OmpU nor OmpT were essential for intestinal colonization (34). Recent findings indicated that OmpU may sense membrane perturbations and activate DegS which in turn modulates σE activity (25, 26). In the symbiotic bacterium Vibrio fischeri the deletion of ompU was shown to reduce the efficiency of colonization of the light organ of the Euprymna scolopes squid and increase sensitivity to bile, antimicrobial peptides, and detergent (1). Interestingly, the ompU strain did not display a competitive defect for colonization in the presence of the wild-type strain.In the present study the growth-phase-regulated outer membrane protein OpnS of X. nematophila was identified as a general porin that conferred a competitive advantage for growth in the insect host. OpnP and OpnS were the only general porins identified in the genome of X. nematophila. The reciprocal expression of OpnP and OpnS suggest that they serve distinct biological roles.  相似文献   

11.
12.
13.
14.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

15.
16.
17.
18.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

19.
20.
Septins are cytoskeletal proteins found in fungi, animals, and microsporidia, where they form multiseptin complexes that act as scaffolds recruiting and organizing other proteins to ensure normal cell division and development. Here we characterize the septins AspA and AspC in the multicellular, filamentous fungus Aspergillus nidulans. Mutants with deletions of aspA, aspC, or both aspA and aspC show early and increased germ tube and branch emergence, abnormal septation, and disorganized conidiophores. Strains in which the native aspA has been replaced with a single copy of aspA-GFP driven by the native septin promoter or in which aspC has been replaced with a single copy of aspC-GFP driven by the native promoter show wild-type phenotypes. AspA-GFP and AspC-GFP show identical localization patterns as discrete spots or bars in dormant and expanding conidia, as rings at forming septa and at the bases of emerging germ tubes and branches, and as punctate spots and filaments in the cytoplasm and at the cell cortex. In conidiophores, AspA-GFP and AspC-GFP localize as diffuse bands or rings at the bases of emerging layers and conidial chains and as discrete spots or bars in newly formed conidia. AspA-GFP forms abnormal structures in ΔaspC strains while AspC-GFP does not localize in ΔaspA strains. Our results suggest that AspA and AspC interact with each other and are important for normal development, especially for preventing the inappropriate emergence of germ tubes and branches. This is the first report of a septin limiting the emergence of new growth foci in any organism.Septins are novel cytoskeletal proteins first discovered in a screen for Saccharomyces cerevisiae cell cycle mutants (14). The core septin proteins, Cdc3, Cdc10, Cdc11, and Cdc12, localize to the mother/bud neck, where they assemble into heteropolymers that organize proteins necessary to complete cytokinesis and ensure proper coordination between bud formation and nuclear division (4, 16, 37, 38).S. cerevisiae septins first appear as a cortical patch at the future bud site. They later form a ring through which the bud emerges and then develop into an hourglass-shaped complex at the base of the bud that splits into two rings to complete cytokinesis (8, 10, 23). In the dimorphic fungus Candida albicans, septins assemble during the formation of buds and pseudohyphae, localize to prebud sites, and form rings at the mother/bud neck. During hyphal growth septins localize to hyphal tips and transiently as a basal band within germ tubes (33, 39). The genome of the filamentous fungus Ashbya gossypii is 90% homologous and syntenic with the genome of S. cerevisiae, though it grows in the filamentous morphology rather than the yeast morphology (6). In A. gossypii septins localize as discrete filamentous bars at septation sites, at tips of hyphae, and at the bases of emerging branches. A. gossypii septins are not essential, though they have been shown to be involved in mitosis, sporulation, hyphal morphogenesis, and septum formation (5, 9).In mammals, septins ensure proper growth, cell migration, vesicle trafficking, and cell division (19, 32, 35, 42). Mammalian septins form distinct filaments that colocalize with and appear to organize the actin and microtubule cytoskeletons (19, 31, 35), punctate patterns at neuron terminals and vesicles, and rings in sperm cells (2, 15, 18, 43).Aspergillus nidulans is a multicellular filamentous fungus which has five septins, AspA, AspB, AspC, AspD, and AspE (29). All five septins are expressed during vegetative and asexual growth, with AspB having the highest expression levels (29). Immunofluorescence studies showed that AspB localizes to septa and conidiophore layers and anticipates the sites of branch emergence (40). To better understand the roles of septins in shaping the growth of multicellular organisms, we characterized A. nidulans septins AspA and AspC, orthologs of S. cerevisiae Cdc11 and Cdc12, respectively (30). Septin deletion mutants were characterized throughout vegetative and asexual development. AspA and AspC are necessary for normal development and morphogenesis as well as sporulation. AspA and AspC were found to localize as rings, caps, puncta, or filaments throughout development. Localization of AspA and that of AspC appear to be mutually dependent, as AspC was unable to localize in the ΔaspA strain and AspA localization was abnormal in the ΔaspC strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号