首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colorectal cancer is the third and fourth leading cause of cancer in males and females, respectively. Flavonoids, including chalcones, are secondary metabolites in plants that exhibit diverse biological activities, including antibacterial, antimalarial, and antitumor activities. In order to find potent and novel chemotherapy drugs for colorectal cancer, a series of benzochalcone derivatives, in which an α,β-unsaturated carbonyl group was replaced with a pyrazoline, was designed and synthesized. A clonogenic survival assay was performed with each derivative to evaluate antitumor activity. 1-(5-(2,4-Dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)naphthalen-2-ol (derivative 7) had the most potent inhibitory effect on the long-term clonogenicity of HCT116 human colorectal cancer cells (IC50 = 2.4 μM). The results of Western blot and flow cytometric analyses suggested that derivative 7 could inhibit the proliferation of colorectal cancer cells through inhibition of cell cycle progression and induction of apoptosis. To elucidate its molecular mechanism, in vitro kinase binding assays were carried out, which demonstrated that derivative 7 inhibited aurora kinases A and B selectively. The binding modes between the compound and aurora kinases were interpreted using in silico docking experiments to explain the selective inhibitory effects on aurora kinases A and B. These findings will facilitate the design of potent novel benzochalcones as anticancer agents.  相似文献   

2.
Ovarian carcinoma remains the most lethal among gynecological cancers. Chemoresistance is a clinical problem that severely limits treatment success. To identify potent anticancer agents against the cisplatin-resistant human ovarian cancer cell line A2780/Cis, 26 polyphenols bearing a cinnamaldehyde scaffold were synthesized. Structural differences in their inhibitory effect on clonogenicity of A2780/Cis cells were elucidated using comparative molecular field analysis and comparative molecular similarity indices analysis. Structural conditions required for increased inhibitory activity can be derived based on the analysis of their contour maps. The two most active compounds (16 and 19) were selected and further characterized their biological activities. We found that compounds 16 and 19 trigger cell cycle arrest at the G2/M phase and apoptotic cell death in cisplatin-resistant A2780/Cis human ovarian cancer cells. The molecular mechanism of compound 16 was elucidated using in vitro aurora A kinase assay, and the binding mode between the compound 16 and aurora A kinase was interpreted using in silico docking experiments. The findings obtained here may help us develop novel plant-derived polyphenols used for potent chemotherapeutic agents. In conclusion, compounds 16 and 19 could be used as promising lead compounds for the development of novel anticancer therapies in the treatment of cisplatin-resistant ovarian cancers.  相似文献   

3.
Structure–activity relationship (SAR) calculations were used to find monoamine oxidase-B (MAO-B) inhibitors by identifying pharmacophores exhibiting high inhibitory activities. Several such chromenylchalcones were designed and synthesized accordingly. Their inhibitory effects on MAO-B were determined using an HPLC-based method and an MAO-B enzyme assay kit. (E)-3-(6-Methoxy-2H-chromen-3-yl)-1-(2-methoxyphenyl)prop-2-en-1-one exhibited a half-maximal inhibitory concentration of 320 nM. Its molecular-level binding mode with the three-dimensional structure of MAO-B was elucidated using an in silico docking study. The chromenylchalcone scaffold, which is derived from natural products including isoflavonoids and chalcones, had not been previously reported as an MAO-B inhibitor.  相似文献   

4.
Phosphatidylinositides, most negatively charged lipids in cellular membranes, regulate diverse effector proteins through the interaction with their lipid binding domains. We have previously reported inhibitory effect of small chemicals on the interaction between PtdIns(3,4,5)P3 and Btk PH domain. Here, we report that the inhibitory effects of same sets of chemicals on Grp1 PH domain and epsin1 ENTH domain to elucidate diversity of inhibitory mechanisms upon different lipid binding domains. Among the chemicals, chemical 8 showed best inhibition in vitro assay for Grp1 PH domain and epsin1 ENTH domain, and then the interaction between small chemicals and lipid binding domains was further investigated by in silico docking experiments. As a result, it was concluded that the diverse inhibitory effects on different lipid binding domains were dependent on not only the number of interactions between small chemical and domain, but also additional interaction with positively charged surfaces as the secondary binding sites. This finding will help to develop lipid binding inhibitors as antagonists for lipid–protein interactions, and these inhibitors would be novel therapeutic drug candidates via regulating effector proteins involved in severe human diseases.  相似文献   

5.

Background

Breast cancer is classified into three subtypes by the expression of biomarker receptors such as hormone receptors and human epidermal growth factor receptor 2. Triple-negative breast cancer (TNBC) expresses none of these receptors and has an aggressive phenotype with a poor prognosis, which is insensitive to the drugs that target the hormone receptors and human epidermal growth factor receptor 2. It is, thus, required to develop an effective therapeutic reagent to treat TNBC.

Results

The study using a panel of 19 breast cancer cell lines revealed that midostaurin, a multi-target protein kinase inhibitor, suppresses preferentially the growth of TNBC cells comparing with non-TNBC cells. Clustering analysis of the drug activity data for the panel of cancer cell lines predicted that midostaurin shares the target with Aurora kinase inhibitors. Following studies indicated that midostaurin attenuates the phosphorylation reaction mediated by Aurora kinase in the cells and directly inhibits this protein kinase in vitro, and that this reagent induces apoptosis accompanying accumulation of 4N and 8N DNA cells in TNBC cells.

Conclusion

Midostaurin suppresses the proliferation of TNBC cells among the breast cancer cell lines presumably through the inhibition of the Aurora kinase family. The precise study of midostaurin on cell growth will contribute to the development of the drug for the treatment of TNBC.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0150-2) contains supplementary material, which is available to authorized users.  相似文献   

6.
Eugenol, a natural compound available in honey and various plants extracts including cloves and Magnoliae flos, is exploited for various medicinal applications. Since most of the drugs used in the cancer are apoptotic inducers, the apoptotic effect and anticancer mechanism of eugenol were investigated against colon cancer cells. Antiproliferative effect was estimated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay]. Earlier events like MMP (mitochondrial membrane potential), thiol depletion and lipid layer break were measured by using flow cytometry. Apoptosis was evaluated using PI (propidium iodide) staining, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay and DNA fragmentation assay. MTT assay signified the antiproliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyses. Our results demonstrated molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemopreventive agent against colon cancer.  相似文献   

7.
Oesophageal cancer is one of the most frequent solid malignancies and the leading cause of cancer‐related death around the world. It is urgent to develop novel therapy strategies to improve patient outcomes. Acetylation modification of histones has been extensively studied in epigenetics. BRD4, a reader of acetylated histone and non‐histone proteins, has involved in tumorigenesis. It has emerged as a promising target for cancer therapy. BRD4 inhibitors, such as JQ1, have exerted efficacious anti‐proliferation activities in diverse cancers. However, the effects of JQ1 on oesophageal cancer are still not fully described. Here, we demonstrate that JQ1 suppresses cell growth and triggers cellular senescence in KYSE450 cells. Mechanistically, JQ1 up‐regulates p21 level and decreases cyclin D1 resulting in G1 cycle arrest. The inhibitory effects of JQ1 on KYSE450 cells are independent on apoptosis. It activates cellular senescence by increasing SA‐β‐gal activity. BRD4 knockdown by shRNA recapitulates cellular senescence. We also display that administration of JQ1 decreases recruitment of BRD4 on the promoter of aurora kinases A and B. Inhibitors targeting at AURKA/B phenocopy JQ1 treatment in KYSE450 cells. These results identify a novel action manner of BRD4 in oesophageal cancer, which strengthens JQ1 as a candidate drug in oesophageal cancer chemotherapy.  相似文献   

8.
Abstract

With an endeavor to develop novel curcumin analogs as potential anti-cancer agents, we designed and synthesized a series of Knoevenagel condensates by clubbing pyrazole carbaldehydes at the active methylene carbon atom of the curcumin backbone. Molecular docking studies were carried out to target the proposed derivatives on human kinase β (IKKβ), a potential anti-cancer target. The chloro derivative displayed five hydrogen bond interactions with a docking score of ?11.874?kcal/mol higher than curcumin (docking score =??7.434?kcal/mol). This was supported by the fact that the propellant shaped derivatives fitted aptly into the binding pocket. Molecular simulations studies were also conducted on the lead molecule and the results figured out that the stable complexes were developed as the minimal deviations per residue of protein within the range of 0.11–0.92 Å. The screened compounds were synthesized, characterized and evaluated in vitro for cytotoxicity against cervical cancer cell line, HeLa using standard cell proliferation assay. Chloro derivative and bromo analog demonstrated IC50 (half maximal inhibitory concentration) value of 14.2 and 18.6 µg/ml, respectively, significantly lower than 42.4 µg/ml of curcumin and higher than 0.008 µg/ml of paclitaxel. Induction of apoptosis was evaluated in the terms of cleavage of caspase-3 enzyme and they also exhibited 69.6 and 65.4% of apoptosis significantly higher than 19.9% induced by curcumin. In conclusion, chloro and bromo derivatives must be evaluated under a set of stringent in vitro and in vivo parameters for translating in to a clinically viable product.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
Cerivastatin is one of the synthetic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used for the treatment and prevention of hypercholesterolaemia. The observation that patients receiving this drug had a lower incidence at cancer led to our interest in using it as a putative anticancer agent. In this study, we tested the cytotoxicity of cerivastatin on a panel of 5-fluorouracil (5FU) sensitive and resistant cell lines in vitro. Cerivastatin was cytotoxic to both 5FU sensitive and resistant cells. Cerivastatin significantly augmented the cytotoxic effect of 5FU on drug sensitive (6-22-fold) and resistant (229-310-fold) cell lines. Cerivastatin and 5FU acted synergistically. Cerivastatin inhibited nuclear factor kappaB DNA binding activity. The enhancing effect of cerivastatin on 5FU was partially mevalonate pathway independent. Cerivastatin may allow successful 5FU therapy in chemoresistant patients.  相似文献   

10.
Protein kinases play key roles in cellular functions. They are involved in many cellular functions including; signal transduction, cell cycle regulation, cell division, and cell differentiation. Alterations of protein kinase by gene amplification, mutation or viral factors often induce tumor formation and tumor progression toward malignancy. The identification and cloning of kinase genes can provide a better understanding of the mechanisms of tumorigenesis as well as diagnostic tools for tumor staging. In this study, we have used degenerated polymerase-chain-reaction primers according to the consensus catalytic domain motifs to amplify protein kinase genes (protein-tyrosine kinase, PTK, and protein-serine/threonine kinase, PSK) from human stomach cancer cells. Following amplification, the protein kinase molecules expressed in the gastric cancer cells were cloned into plasmid vectors for cloning and sequencing. Sequence analysis of polymerase-chain-reaction products resulted in the identification of 25 protein kinases, including two novel ones. Expression of several relevant PTK/PSK genes in gastric cancer cells and tissues was further substantiated by RT-PCR using gene-specific primers. The identification of protein kinases expressed or activated in the gastric cancer cells provide the framework to understand the oncogenic process of stomach cancer.  相似文献   

11.
While agents targeting estrogen receptors are most effective in adjuvant therapy for human breast cancers expressing estrogen receptors after surgery, breast cancers lacking estrogen receptor are clinically serious, because they are highly malignant and exhibit resistance to the usual anti-cancer drugs, including estrogen receptor-antagonists and DNA breaking agents. Here, we found that MX-1, a human breast cancer cell line lacking estrogen receptors, exhibited higher AP-1 activity and expressed higher levels of c-Jun, c-Fos, and Fra-1 when compared with conventional estrogen receptor-positive human breast cancer cell lines. The prenylphenol antibiotic ascochlorin suppressed the AP-1 activity of MX-1 cells, and selectively killed MX-1 cells, partly due to induction of apoptosis. Our results suggest that AP-1 is an effective clinical target molecule for the treatment of estrogen receptor-negative human breast cancer.  相似文献   

12.
Abstract

Protein kinase B also known as AKT is a cardinal node in different signaling pathways that regulates diverse cell processes. AKT has three isoforms that share high homology. Hyperactivation of each isoform is related with different types of cancer. This work describes the computational search for new inhibitors using a hit optimization process of the previously reported AKT pan inhibitor, a 2,4,6-trisubstituted pyridine. A database of new molecules was proposed using a variant of fragment-based docking methodology and previous reported considerations. Molecular docking followed by molecular dynamics studies were performed to select the best compounds and analyze their behavior. Protein–ligand complexes energy was calculated using molecular mechanics Poisson–Boltzmann surface area protocol. Further, proposed molecules were compared with the ChEMBL database of compounds assayed against AKT. Data analysis leads to determine the structural requirements necessary for a favorable interaction of the proposed ligands with the AKT pocket. Molecular dynamics data suggested that the pKa of the ligands is important for the stability in the AKT pocket. Molecular similarity analysis shows that proposed ligands have not been previously reported. Thus, ligands with high docking scores and favorable behavior on molecular dynamics simulations are proposed as potential AKT inhibitors.  相似文献   

13.
Carcinogenesis is a long process that results in the accumulation of genetic alterations primarily in genes involved in the regulation of signalling pathways relevant for the regulation of cell growth and the cell cycle. Alteration of additional genes regulating cell adhesion and migration, angiogenesis, apoptosis, and drug resistance confers to the cancer cells a more malignant phenotype. Genes that participate in the regulation of some critical metabolic pathways are also altered during this process. Choline kinase (ChoK) has been reported to belong to the latter family of cancer-related genes. Recently, we have reported that increased activity of ChoK is observed in human breast carcinomas. Here, we provide further evidence that ChoK dysregulation is a frequent event found in a variety of human tumors such as lung, colorectal, and prostate tumors. Furthermore, a large panel of human tumor-derived cell lines also show increased ChoK activity when compared to appropriate non-tumorigenic or primary cells. These findings strongly support the role of ChoK alterations in the carcinogenic process in human tumors, suggesting that ChoK could be used as a tumor marker.  相似文献   

14.
We developed an in vitro model to evaluate the effect of products secreted from different colorectal cancer (CRC) cell lines on specific phenotypic switching and functional alterations in THP-1 cells. We co-cultured the human monocytic cell line, THP-1, or phorbol-12-myristate-13-acetate (PMA)-treated THP-1 cells, (THP-1p), with supernatants from either the HT-29 (Dukes’ B), HCT-15 (Dukes’ C), or Colo205 (Dukes’ D) cell lines, and assessed the cells for macrophage differentiation. The surface marker and cytokine profiles suggested that secreted CRC factors differentiated THP-1 cells into a “mixed” M1/M2 phenotype, although HT-29 and Colo205 supernatants induced THP-1p cells into predominantly M1-like macrophages and M2-like macrophages, respectively. Further, all three CRC supernatants enhanced the phagocytic capacity and migration of THP-1 and THP-1p cells, altering their phenotype to a more M2-kind. Therefore, different CRC cell lines induced specific phenotype switching and functional polarization of THP-1 cells.  相似文献   

15.
Mammalian cell entry (mce) operons, implicated in the entry of mycobacteria into host cells, are present in pathogenic and saprophytic species. It is likely that the genes in these operons have functions other than those required for entry into host cells. Using in silico analysis we have identified domains within the mce operons that might justify their occurrence in saprophytic species like Mycobacterium smegmatis. Our analysis identified in addition to the mce domain, the presence of the Ttg2B and Ttg2C domains, typical of proteins involved in transport. We have also analysed and compared the expression profile between mce operons of Mycobacterium tuberculosis, Mycobacterium bovis and M. smegmatis under different growth conditions. In case of M. smegmatis, each operon presented domain truncation for at least one gene. We observe differential expression among the operons in M. smegmatis growing under different culture conditions. Bacilli growing in nutritionally rich medium with aeration, only the mce4 operon was expressed while during stationary phase of a standing culture, all four mce operons were expressed. In M. bovis, in addition to the absence of the mce3 operon, several protein domains encoded by the other operons were truncated. We detected expression of the mce2 operon in the exponential and stationary growth phase, while the mce1 operon was only expressed in the stationary growth phase. Differential expression of mce operons and their redundancy in the genome of the majority members of mycobacteria are discussed in view of our results.  相似文献   

16.
Understanding the complex interaction between gametes or embryos and the maternal genital tract requires the use of experimental models. The selection of the right model is an important task to undertake, and despite many new developments in this area, an ideal model system has not yet been developed. In this review article, we focus on how the most appropriate model species and model system can be selected, each with its particular advantages and disadvantages. Selection criteria need to be based on the evaluation of the aim of the experiment, the tools that are available to the scientist, and the ethics that are involved in working with particular animal species and model systems. Society and politics direct scientists to “Refine, Reduce, and Replace” the use of experimental animals, which means that the use of in vivo models is increasingly being discouraged. An in vivo model allows experimentation in the full biological environment of a living organism. In contrast with in vivo models, in vitro models are less complex and are abstracts of in vivo systems, leading often to results that are different from the in vivo situation. If an investigator could understand all the components of a complex biological system and re-create them as individual smaller models in a computer, he or she could create in silico models that would completely represent the complexity of in vivo models. We predict that in the future, in silico modeling will be the natural departure from in vivo, in situ, and in vitro modeling approaches. In addition to numerous advantages that this modeling approach can bring to studying maternal interaction with gametes and embryo, it is perhaps the only true alternative method to animal experimentation.  相似文献   

17.
Cancer-associated retinopathy (CAR) is an ocular manifestation of a paraneoplastic syndrome whereby immunological reactions toward recoverin (Rec), a retina-specific Ca(2+) binding protein, and its aberrant expression in tumor cells lead to the retinal degeneration. To elucidate functional roles of the aberrantly expression in cancer cells, we performed immunoprecipitation using anti-human Rec mAb. We observed co-precipitation of G-protein-coupled receptor kinases (GRKs) and caveolin-1 with Rec from cell lysates of 293 or SSTW cells. Immunocytochemistry revealed that immunoreactivities toward Rec within the cancer cells were almost identical to those toward GRKs and caveolin-1. The present data strongly suggest that aberrantly expressed Rec should be involved in the GRK-dependent cellular regulation in cancer cells.  相似文献   

18.
19.
20.
Abstract

De novo lipogenesis (DNL) by upregulation of fatty acid synthase (FASN) is an important metabolic alteration of cancer cells. FASN is over-expressed in several cancers and is often associated with a high risk of recurrence and poor prognosis. Differential expression of FASN in cancer cells and their normal counterparts leads to the impression that FASN can be an attractive druggable target in cancer therapy. Present study focuses on identification of inhibitors against FASN ketoacyl synthase (KS) domain from Asinex Biodesign compound database using in silico tools. Virtual screening resulted in the identification of two hit compounds BDD27845077 and BDD27845082 with a common core structure. Molecular Docking studies showed that BDD27845077 and BDD27845082 bind at the substrate entry channel of KS domain with GScore –12.03?kcal/mol and –12.29?kcal/mol respectively. Molecular dynamics (MD) simulation of the protein-ligand complexes shows the binding stability of ligands with FASN-KS. In vitro validation of BDD27845082 demonstrated that the compound possesses antiproliferative activity in a panel of human cancer cell lines including MDA-MB-231 (breast cancer), HCT-116 (colon cancer) and HeLa (cervical cancer) with maximum sensitivity against HCT-116 (IC 50?=?25?µM). The study put forward two lead compounds against FASN with favorable pharmacokinetic profile as indicated by virtual screening tools for the development of cancer chemotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号