首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The administration of l-tryptophan to both intact and adrenalectomized animals results in a marked increase in the activity of tyrosine aminotransferase. Maximal increases in enzyme activity are stimulated by doses of l-tryptophan much lower than those required for maximal stimulation of tryptophan oxygenase activity in vivo. When l-tryptophan was administered to animals that had been given cortisone 5 hr earlier, a further sustained increase in enzyme activity was demonstrated. 5-Hydroxy-dl-tryptophan and indole administration in amounts equimolar to l-tryptophan also result in similar increases in activity whereas α-methyl-dl-tryptophan produces little or no increase.Utilizing pulse-labeling in vivo with quantitative immunochemical precipitation of tyrosine aminotransferase by specific antisera, it was demonstrated that the administration of tryptophan caused an increase in enzyme amount with no concomitant increase in the rate of enzyme synthesis. In animals given cortisone, subsequent injections of tryptophan caused the amount of enzyme to continue to increase while both the amount of enzyme in control animals, as well as the rates of synthesis in both tryptophan-treated and control animals, decreased in a parallel fashion. Prelabeling of tyrosine aminotransferase in vivo after the enzyme had been induced with cortisone demonstrated that the subsequent administration of tryptophan caused a marked inhibition in the decay of the radioactive enzyme, as well as in enzyme activity. These data support the proposal that the amino acid, tryptophan, has a special role both in the maintenance of hepatic protein synthesis and in the regulation of specific enzyme degradation in rat liver.  相似文献   

2.
Potent effect of target structure on microRNA function   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small noncoding RNAs that repress protein synthesis by binding to target messenger RNAs. We investigated the effect of target secondary structure on the efficacy of repression by miRNAs. Using structures predicted by the Sfold program, we model the interaction between an miRNA and a target as a two-step hybridization reaction: nucleation at an accessible target site followed by hybrid elongation to disrupt local target secondary structure and form the complete miRNA-target duplex. This model accurately accounts for the sensitivity to repression by let-7 of various mutant forms of the Caenorhabditis elegans lin-41 3' untranslated region and for other experimentally tested miRNA-target interactions in C. elegans and Drosophila melanogaster. These findings indicate a potent effect of target structure on target recognition by miRNAs and establish a structure-based framework for genome-wide identification of animal miRNA targets.  相似文献   

3.
3-Chloro-alpha-phenylpyrazinemethanol (3-CPM) inhibited monoamine oxidase (MAO) types A and B in vivo in mouse brain, heart and liver. The inhibition was dose-dependent at doses of 0.3-32 mg/kg i.p. and occurred within 1 h after the compound was injected. 3-CPM was a very weak inhibitor of mouse brain mitochondrial MAO activity in vitro, even when preincubated with the enzyme; MAO-A was inhibited only about 50% at a high concentration of 3-CPM (1 mM), and MAO-B was inhibited even less. After a 10 mg/kg i.p. dose of 3-CPM in mice, both MAO-A and MAO-B were inhibited at day 1, but activity had largely recovered within a few days in brain, liver and heart. 3-CPM at doses of 1, 3, 10 and 32 mg/kg i.p. caused dose-dependent antagonism of the depletion of striatal dopamine and of cortical norepinephrine by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 3-CPM is therefore a potent inhibitor of MAO-A and of MAO-B in mice in vivo despite its weak effect on the enzyme in vitro. A metabolite of the drug may be involved in the in vivo effects.  相似文献   

4.
5.
(R)-Trichostatin A (TSA) is a Streptomyces product which causes the induction of Friend cell differentiation and specific inhibition of the cell cycle of normal rat fibroblasts in the G1 and G2 phases at the very low concentrations. We found that TSA caused an accumulation of acetylated histone species in a variety of mammalian cell lines. Pulse-labeling experiments indicated that TSA markedly prolonged the in vivo half-life of the labile acetyl groups on histones in mouse mammary gland tumor cells, FM3A. The partially purified histone deacetylase from wild-type FM3A cells was effectively inhibited by TSA in a noncompetitive manner with Ki = 3.4 nM. A newly isolated mutant cell line of FM3A resistant to TSA did not show the accumulation of the acetylated histones in the presence of a higher concentration of TSA. The histone deacetylase preparation from the mutant showed decreased sensitivity to TSA (Ki = 31 nM, noncompetitive). These results clearly indicate that TSA is a potent and specific inhibitor of the histone deacetylase and that the in vivo effect of TSA on cell proliferation and differentiation can be attributed to the inhibition of the enzyme.  相似文献   

6.
microRNA(miRNA)是在真核生物中发现的一类内源性具有调控功能的非编码RNA。miRNA对基因表达的转录后调控在免疫、感染性疾病以及肿瘤的在体给药方面有着巨大的潜力与优势。本文从miRNA的概念、在体作用机制、临床应用研究以及在体给药基本方式等几个方面对miRNA在体给药的研究进展进行综述,从而为生命科学研究和临床用药研究提供信息。  相似文献   

7.
Palytoxin, produced by a stationary marine animal and one of the most toxic substances known, was used as a spear poison in ancient Hawaii to cause death by cardiovascular contracture. We report here that the motility of hamster caudal epididymal (HCE) and other sperm can be inhibited by as little as 10−13 M palytoxin in a time-dependent manner. This inhibition manifested itself as a loss in flagellar amplitude, often accompanied by an increase in beat frequency, resulting in a loss of forward progression and ultimately cessation of movement. Similar effects were observed in sperm from guinea pigs, rabbit, cattle, sea urchins and man. Preincubation with palytoxin did not prevent the induction of motility from quiescence in HCE sperm when free calcium ion was added. However, regardless of the timing of palytoxin addition this very vigorous motility disappeared shortly after it appeared. These, plus earlier observations showing palytoxin did not cause lysis under similar conditions or inhibit the progressive motility of demembranated sperm axoneme preparations, suggest both that this large molecule acts via the plasma membrane to cause its exceedingly toxic effects and that spermatozoa may be useful for the investigation of the mechanism of action of palytoxin.  相似文献   

8.
An inhibitor of microRNA-122 reduces viral load in chimpanzees that are chronically infected with hepatitis C virus, suggesting that such an approach might have therapeutic potential in humans.  相似文献   

9.
The mechanism by which micro (mi)RNAs control their target gene expression is now well understood. It is however less clear how the level of miRNAs themselves is regulated. Under specific conditions, abundant and highly complementary target RNA can trigger miRNA degradation by a mechanism involving nucleotide addition and exonucleolytic degradation. One such mechanism has been previously observed to occur naturally during viral infection. To date, the molecular details of this phenomenon are not known. We report here that both the degree of complementarity and the ratio of miRNA/target abundance are crucial for the efficient decay of the small RNA. Using a proteomic approach based on the transfection of biotinylated antimiRNA oligonucleotides, we set to identify the factors involved in target-mediated miRNA degradation. Among the retrieved proteins, we identified members of the RNA-induced silencing complex, but also RNA modifying and degradation enzymes. We further validate and characterize the importance of one of these, the Perlman Syndrome 3′-5′ exonuclease DIS3L2. We show that this protein interacts with Argonaute 2 and functionally validate its role in target-directed miRNA degradation both by artificial targets and in the context of mouse cytomegalovirus infection.  相似文献   

10.
11.

Key message

Anti-microRNA oligonucleotides (AMOs) are efficient and sequence-specific inhibitors of plant miRNA function both in vitro and in vivo.

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in developmental and physiological processes in plants and animals. Although miRNA knockdown by chemically modified antisense oligonucleotides prevails in animal and therapeutic studies, no such application has ever been reported in plants. Here, we show that sucrose-mediated delivery of 2′-O-methyl (2′-O-Me) anti-miRNA oligonucleotides (AMOs) is an efficient and sequence-specific way of inhibiting plant miRNA activity both in vitro and in vivo. Administration of AMOs to rice protoplasts and intact leaves resulted in efficient inhibition of miRNAs with concurrent de-repression of their target genes. AMOs caused simultaneous inhibition of miRNAs from the same family but exerted negligible effects on miRNAs from different families. In rice seedlings, a single-dose AMO treatment conferred long-lasting miRNA inhibition for at least 7 days. Although simultaneous dysregulation of multiple miRNAs by an AMO-and-miRNA-mimic mixture resulted in severe root defects, the phenotypic effects of individual AMOs and miRNA mimics were negligible, suggesting that those miRNAs function together in regulatory networks to ensure homeostasis. Our results validate the utility of AMOs as an efficient tool for plant miRNA loss-of-function studies in vivo, and this approach may prove to be a highly promising general method for unraveling miRNA-mediated gene-regulatory networks.
  相似文献   

12.
13.
MicroRNAs (miRNAs) are versatile regulators of gene expression and undergo complex maturation processes. However, the mechanism(s) stabilizing or reducing these small RNAs remains poorly understood. Here we identify mammalian immune regulator MCPIP1 (Zc3h12a) ribonuclease as a broad suppressor of miRNA activity and biogenesis, which counteracts Dicer, a central ribonuclease in miRNA processing. MCPIP1 suppresses miRNA biosynthesis via cleavage of the terminal loops of precursor miRNAs (pre-miRNAs). MCPIP1 also carries a vertebrate-specific oligomerization domain important for pre-miRNA recognition, indicating its recent evolution. Furthermore, we observed potential antagonism between MCPIP1 and Dicer function in human cancer and found a regulatory role of MCPIP1 in the signaling axis comprising miR-155 and its target c-Maf. These results collectively suggest that the balance between processing and destroying ribonucleases modulates miRNA biogenesis and potentially affects pathological miRNA dysregulation. The presence of this abortive processing machinery and diversity of MCPIP1-related genes may imply a dynamic evolutional transition of the RNA silencing system.  相似文献   

14.
Summary Telomerase activity is repressed in normal human somatic cells, but is activated in most cancers, suggesting that telomerase may be an important target for cancer therapy. In this study, we report that U-73122, an amphiphilic alkylating agent that is commonly used as an inhibitor for phospholipase C, is also a potent and selective inhibitor of human telomerase. The inhibition of telomerase by U-73122 was attributed primarily to the pyrrole-2,5-dione group, since its structural analog U-73343 did not inhibit telomerase. In confirmation, we observed that telomerase was inhibited by N-ethylmaleimide, but not N-ethylsuccinimide. The IC50 value of U-73122 for the in vitro inhibition of telomerase activity is 0.2 μM, which is comparable to or slightly more sensitive than that for phospholipase C. The inhibitory action of U-73122 on telomerase appears to be rather selective since the presence of externally added proteins did not protect the inhibition and the IC50 values for the other enzymes tested in this study were at least an order of magnitude higher than that for telomerase. Furthermore, we demonstrate that U-73122 can inhibit telomerase in hematopoietic cancer cells. The potent and selective inhibition of telomerase by U-73122 raises the potential exploitation of this drug and other alkylating agents as telomerase inhibitor.  相似文献   

15.
16.
The development of antisense technology as a generally useful tool relies on the use of potent agents and the utilization of many controls in experiments. Here we describe our experience using oligodeoxynucleotides (ODNs) containing C-5 propynyl pyrimidine and phosphorothioate modifications as broadly applicable gene inhibition agents in cell culture. Methods include selection of antisense sequences, synthesis and purification of ODNs, choice of controls, delivery methods (microinjection, cationic lipid transfection, and electroporation), and analysis of gene inhibition.  相似文献   

17.
Potent inhibition of tau fibrillization with a multivalent ligand   总被引:1,自引:0,他引:1  
Small-molecule inhibitors of tau fibrillization are under investigation as tools for interrogating the tau aggregation pathway and as potential therapeutic agents for Alzheimer's disease. Established inhibitors include thiacarbocyanine dyes, which can inhibit recombinant tau fibrillization in the presence of anionic surfactant aggregation inducers. In an effort to increase inhibitory potency, a cyclic bis-thiacarbocyanine molecule containing two thiacarbocyanine moieties was synthesized and characterized with respect to tau fibrillization inhibitory activity by electron microscopy and ligand aggregation state by absorbance spectroscopy. Results showed that the inhibitory activity of the bis-thiacarbocyanine was qualitatively similar to a monomeric cyanine dye, but was more potent with 50% inhibition achieved at approximately 80nM concentration. At all concentrations tested in aqueous solution, the bis-thiacarbocyanine collapsed to form a closed clamshell structure. However, the presence of tau protein selectively stabilized the open conformation. These results suggest that the inhibitory activity of bis-thiacarbocyanine results from multivalency, and reveal a route to more potent tau aggregation inhibitors.  相似文献   

18.
A new class of compounds that exhibit anti-norovirus activity in a cell-based system and embody in their structure a cyclosulfamide scaffold has been identified. The structure of the initial hit (compound 2a, ED(50) 4 μM, TD(50) 50 μM) has been prospected by exploiting multiple points of diversity and generating appropriate structure-activity relationships.  相似文献   

19.
Potent inhibitors for macrophomate synthase, which has recently been found to catalyze a highly unusual five-step chemical transformation, were explored. Among 11 oxalacetate analogs tested, only three analogs had moderate to relatively strong inhibitory activities (I50 1.3-8.1 mM). On the other hand, among 35 bicyclic intermediate analogs synthesized, two diacids were found to be the most potent inhibitors (I50 0.80, 0.84 mM) which had a much higher affinity than that of the natural substrate 2-pyrone. (-)-Enantiomers of the diacids showed 30 times stronger activity (I50 0.34, 0.41 mM) than (+)-ones. The I50/Km values (0.20, 0.24) showed their potent inhibitions. Competitive inhibitions were observed in two representative inhibitors.  相似文献   

20.
MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3′ terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号