首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes about 2 million people to death every year. Fusion inhibitors targeted the envelope protein (gp41) represent a novel and alternative approach for anti-AIDS therapy, which terminates the HIV-1 life cycle at an early stage. Using CP621-652 as a template, a series of peptides were designed, synthesized and evaluated in vitro assays. An interesting phenomenon was found that the substitution of hydrophobic residues at solvent accessible sites could increase the anti-HIV activity when the C-terminal sequence was extended with an enough numbers of amino acids. After the active peptides was synthesized and evaluated, peptide 8 showed the best anti-HIV-1 IIIB whole cell activity (MAGI IC50 = 53.02 nM). Further study indicated that peptide 8 bound with the gp41 NHR helix, and then blocked the conformation of 6-helix, thus inhibited virus–cell membrane fusion. The results would be helpful for the design of peptide fusion inhibitors against HIV-1 infection.  相似文献   

2.
Based on molecular docking analysis of earlier results, we designed a series of 2,5-disubstituted furans/pyrroles (5a-h) as HIV-1 entry inhibitors. Compounds were synthesized by Suzuki-Miyaura cross coupling, followed by a Knoevenagel condensation or Wittig reaction. Four of these compounds were found to be effective in inhibiting HIV-1 infection, with the best compounds being 5f and 5h, which exhibited significant inhibition on HIV-1(IIIB) infection at micromolar levels with low cytotoxicity. These compounds are also effective in blocking HIV-1 mediated cell-cell fusion and the gp41 six-helix bundle formation, suggesting that they are also HIV-1 fusion inhibitors targeting gp41 and have potential to be developed as a new class of anti-HIV-1 agents.  相似文献   

3.
Using a recombinant protein N46FdFc that mimics the HIV-1 gp41 N-helix trimer to immunize mice, we identified the first IgM monoclonal antibody 18D3 that specifically bound to the conserved gp41 pocket. Its F(ab′)2 fragment potently inhibited HIV-1 Env-mediated cell–cell fusion and neutralized infection by laboratory-adapted and primary HIV-1 isolates with different subtypes and tropism, including the T20-resistant variants. This F(ab′)2 fragment can be used to develop a bispecific broad neutralizing monoclonal antibody or HIV-1 inactivator as a novel immunotherapeutic for treatment and prevention of HIV-1 infection.  相似文献   

4.
Using a human non-immune phage library comprising more than 10(9) functional human antibody specificities in Fab format, we have been able to select a set of eight monoclonal Fabs targeted against diverse epitopes of the ectodomain of gp41 from HIV-1. The antigens used for panning the antibodies comprised two soluble, disulfide-linked, trimeric polypeptides derived from gp41, N(CCG)-gp41 and N35(CCG)-N13. The former comprises an exposed trimeric coiled-coil of the N-helices of gp41 fused in helical phase to the minimal thermostable ectodomain of gp41, while the latter comprises only the trimeric coiled-coil of N-helices. The selected Fabs were probed by Western blot analysis against four antigens: N(CCG)-gp41, N35CCG-N13, N34CCG (a smaller version of N35CCG-N13), and the minimal thermostable ectodomain core of gp41 in its six-helix bundle conformation (6-HB). Three classes of Fabs were found: class A (two Fabs) interact predominantly with the 6-HB; class B (four Fabs) interact with both the 6-HB and the internal trimeric coiled-coil of N-helices; and class C (two Fabs) interact specifically with the internal trimeric coiled-coil of N-helices. The IC50 values for the Fabs, expressed as bivalent mini-antibodies, ranged from 6 microg/ml to 60 microg/ml in a quantitative vaccinia virus-based reporter gene assay for HIV-1 envelope-mediated cell fusion using the envelope from the HIV-1 T tropic strain LAV. The two most potent fusion inhibitors belonged to class B. This panel of Fabs provides a set of useful probes for studying HIV-1 envelope-mediated cell fusion and may serve as a basis for developing Fab-based anti-HIV-1 therapeutics.  相似文献   

5.
Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40–60 times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.  相似文献   

6.
Despite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R696 (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R696, it was mutated to K, A, I, L, D, E, N, and Q. Most of these substitutions did not affect the expression, processing or surface distribution of the envelope protein (Env). However, a syncytia formation assay showed that the substitution of R696 with amino acid residues other than K, a naturally observed mutation in the gp41 MSD, decreased fusion activity. Substitution with hydrophobic amino acid residues (A, I, and L) resulted in a modest decrease, while substitution with D or E, potentially negatively-charged residues, almost abolished the syncytia formation. All the fusion-defective mutants showed slower kinetics with the cell-based dual split protein (DSP) assay that scores the degree of membrane fusion based on pore formation between fusing cells. Interestingly, the D and E substitutions did show some fusion activity in the DSP assays, suggesting that proteins containing D or E substitutions retained some fusion pore-forming capability. However, nascent pores failed to develop, due probably to impaired activity in the pore enlargement process. Our data show the importance of this conserved arginine residue for efficient membrane fusion.  相似文献   

7.
8.
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.  相似文献   

9.
A series of novel or known water-soluble derivatives of chiral gossypol were synthesized and screened in vitro for their anti-HIV-1 activity. (?)-gossypol derivative was more active against HIV-1 than the corresponding (+)-gossypol derivative, respectively. Among these derivatives, d-glucosamine derivative of (?)-gossypol, oligopeptide derivative of (?)-gossypol and taurine derivative of (?)-gossypol, such as compounds 1a, 3a and 14a, showed significant inhibitory activities against HIV-1 replication, HIV-1 mediated cell-cell fusion and HIV gp41 6-helix bundle formation as some amino acid derivatives of (?)-gossypol.  相似文献   

10.
The envelope proteins, gp 120 and gp41 of HIV-1, play a crucial role in receptor (CD4+ lymphocytes) binding and membrane fusion. The fragment 254-274 of gp120 is conserved in all strains of HIV and, as a part of the full gp120 protein, behaves as 'immunosilent', but as an individual fragment it is 'immunoreactive'. When this fragment binds to its receptor, it activates the fusion domain of gp41 allowing viral entry into the host CD4+ cells. The conformation of fragment 254-274 of the gp120 domain and fragment 519-541 of the gp41 domain was studied by NMR and MD simulations. The studies were carried out in three varied media--water, DMSO-d6 and hexafluoroacetone (HFA). The fusogenic nature of the gp41 domain peptide was investigated by 31P NMR experiments with model bilayers prepared from dimyristoyl-L-alpha-phosphatidylcholine (DMPC). The solvent was seen to exert a major effect on the structure of the two peptides. Fragment (254-274) of gp120 in DMSO-d6 had a type I beta-turn around the tetrad Val9-Ser10-Thr11-Gln12 while in HFA a helical structure spanning the region Ile5 to Gln12 was seen with the remaining part of the peptide in a random coil structure. It is possible that the beta-turn may constitute an initiation site for the formation of the helix. In water at pH 4.5, the peptide adopted a beta-sheet. The NMR results for fragment 519-541 of gp41 are conclusive of a beta-sheet structure in DMSO-d6, a conformation which may help in insertion into the membrane, a notion also put forward by others. The 31P NMR studies of DMPC vesicles with this fragment show its fusogenic nature, promoting fusion of unilamellar vesicles to larger agglomerates like multilamellar ones.  相似文献   

11.
Bao J  Zhang DW  Zhang JZ  Huang PL  Huang PL  Lee-Huang S 《FEBS letters》2007,581(14):2737-2742
Recent experimental study found that OLE (olive leaf extract) has anti-HIV activity by blocking the HIV virus entry to host cells [Lee-Huang, S., Zhang, L., Huang, P.L., Chang, Y. and Huang, P.L. (2003) Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem. Biophys. Res. Commun. 307, 1029; Lee-Huang, S., Huang, P.L., Zhang, D., Lee, J.W., Bao, J., Sun, Y., Chang, Y.-Tae, Zhang, J.Z.H. and Huang, P.L. (2007) Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol. Biochem. Biophys. Res. Commun. 354, 872-878, 879-884]. As part of a joint experimental and theoretical effort, we report here computational study to help identify and characterize the binding complexes of several main compounds of OLE (olive leaf extract) to HIV-1 envelop protein gp41. A number of possible binding modes are found by docking oleuropein and its metabolites, aglycone, elenolic acid and hydroxytyrosol, onto the hydrophobic pocket on gp41. Detailed OLE-gp41 binding interactions and free energies of binding are obtained through molecular dynamics simulation and MM-PBSA calculation. Specific molecular interactions in our predicted OLE/gp41 complexes are identified and hydroxytyrosol is identified to be the main moiety for binding to gp41. This computational study complements the corresponding experimental investigation and helps establish a good starting point for further refinement of OLE-based gp41 inhibitors.  相似文献   

12.
13.
14.
A novel series of 3-hydroxyquinazoline-2,4(1H,3H)-diones derivatives has been designed and synthesized. Their biochemical characterization revealed that most of the compounds were effective inhibitors of HIV-1 RNase H activity at sub to low micromolar concentrations. Among them, II-4 was the most potent in enzymatic assays, showing an IC50 value of 0.41 ± 0.13 μM, almost five times lower than the IC50 obtained with β-thujaplicinol. In addition, II-4 was also effective in inhibiting HIV-1 IN strand transfer activity (IC50 = 0.85 ± 0.18 μM) but less potent than raltegravir (IC50 = 71 ± 14 nM). Despite its relatively low cytotoxicity, the efficiency of II-4 in cell culture was limited by its poor membrane permeability. Nevertheless, structure-activity relationships and molecular modeling studies confirmed the importance of tested 3-hydroxyquinazoline-2,4(1H,3H)-diones as useful leads for further optimization.  相似文献   

15.
Based on the structure of HIV-1 gp41 binding site for small-molecule inhibitors, optimization of lead 2 resulted in the discovery of a new series of 2,5-dimethyl-3-(5-(N-phenylrhodaninyl)methylene)-N-(3-(1H-tetrazol-5-yl)phenyl)pyrrole compounds with improved anti-HIV-1 activity. The most active compounds 13a and 13j exhibited significant potency against gp41 6-HB formation with IC(50) values of 4.4 and 4.6 μM and against HIV-1 replication in the MT-2 cells with EC(50) values of 3.2 and 2.2 μM, respectively, thus providing a new starting point to develop highly potent small-molecule HIV fusion inhibitors targeting gp41.  相似文献   

16.
The overexpression of P-glycoprotein plays an important role in the process of multidrug resistance (MDR). P-gp inhibitors are one of the effective strategies to reverse tumor MDR. Novel P-gp inhibitors with phthalazinone scaffolds were designed, synthesized and evaluated. Compound 26 was found to be the most promising for further study. Compound 26 possessed high potency (EC50 = 46.2 ± 3.5 nM) and low cytotoxicity.26 possessed high MDR reversal activity towards doxorubicin-resistant K56/A02 cells. Reversal fold (RF) value reach to 44.26. 26 also increased accumulation of doxorubicin (DOX or ADM) or other MDR-related anticancer drugs with different structures. In conclusion, compound 26 deserves more research for its good features as P-gp inhibitor.  相似文献   

17.
18.
Viral infectivity factor (Vif) is one of the accessory protein of human immunodeficiency virus type I (HIV-1) that inhibits host defense factor, APOBEC3G (A3G), mediated viral cDNA hypermutations. Previous work developed a novel Vif inhibitor 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide (1) with strong antiviral activity. Through optimizations on the two side branches, a series of compound 1 derivatives (218) were designed, synthesized and tested in vitro for their antiviral activities. The biological results showed that compound 5 and 16 inhibited the virus replication efficiently with EC50 values of 9.81 and 4.62 μM. Meanwhile, low cytotoxicities on H9 cells were observed for the generated compounds by the MTT assay. The structure–activity relationship of compound 1 was preliminarily clarified, which gave rise to the development of more potent Vif inhibitors.  相似文献   

19.
11-Beta-Hydroxysteroid dehydrogenase-1(11β-HSD1) inhibitors are one of the emerging classes of molecules to fight against diabetic complications. A novel series of 4-(1-substituted-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine derivatives were synthesized and evaluated for their anti-diabetic activity. Two compounds showed anti-diabetic activity very effectively. To clarify the mechanism of action of these compounds, the most potent compounds (5g and 5h) of the synthesized analogs were further studied by testing its 11-Beta Hydroxysteroid dehydrogenase-1 inhibitory activity through in vitro enzymatic experiments. The results showed that the 11β-HSD1 inhibitory activity of compounds 5g and 5h was stable and efficient. Molecular docking studies revealed compounds 5g (−9.758) and 5h (−8.495) to have a stable binding patterns to the human 11-Beta-Hydroxysteroid dehydrogenase-1.  相似文献   

20.
Following our research for human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents, herein we describe 3D QSAR-based design, synthesis and in vitro screening of 2-,4,-6-, and/or 7-substituted quinoline derivatives as hDHODH inhibitors and anticancer agents. We have designed 2-,4,-6-, and/or 7-substituted quinoline derivatives and predicted their hDHODH inhibitory activity based on 3D QSAR study on 45 substituted quinoline derivatives as hDHODH inhibitors, and also predicted toxicity. Designed compounds were docked into the binding site of hDHODH. Designed compounds which showed good predictive activity, no toxicity, and good docking score were selected for the synthesis, and in vitro screening as hDHODH inhibitors in an enzyme inhibition assay, and anticancer agents in MTT assay against cancer cell lines (HT-29 and MDA-MB-231). Synthesized compounds 7 and 14 demonstrated IC50 value of 1.56?µM and 1.22?µM, against hDHODH, respectively, and these are our lead compounds for the development of new hDHODH inhibitors and anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号