首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences.

Methodology

Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics.

Principal Findings

Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12–16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6–9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes.

Conclusions

This work demonstrates the accessibility of chemosensory information in the honeybee colonies with respect to incoming nectar. The modulation of the sensory-response systems within the hive can have important effects on the dynamics of food transfer and information propagation.  相似文献   

2.

Background

Bradykinesia is a cardinal feature of Parkinson’s disease (PD). Despite its disabling impact, the precise cause of this symptom remains elusive. Recent thinking suggests that bradykinesia may be more than simply a manifestation of motor slowness, and may in part reflect a specific deficit in the operation of motivational vigour in the striatum. In this paper we test the hypothesis that movement time in PD can be modulated by the specific nature of the motivational salience of possible action-outcomes.

Methodology/Principal Findings

We developed a novel movement time paradigm involving winnable rewards and avoidable painful electrical stimuli. The faster the subjects performed an action the more likely they were to win money (in appetitive blocks) or to avoid a painful shock (in aversive blocks). We compared PD patients when OFF dopaminergic medication with controls. Our key finding is that PD patients OFF dopaminergic medication move faster to avoid aversive outcomes (painful electric shocks) than to reap rewarding outcomes (winning money) and, unlike controls, do not speed up in the current trial having failed to win money in the previous one. We also demonstrate that sensitivity to distracting stimuli is valence specific.

Conclusions/Significance

We suggest this pattern of results can be explained in terms of low dopamine levels in the Parkinsonian state leading to an insensitivity to appetitive outcomes, and thus an inability to modulate movement speed in the face of rewards. By comparison, sensitivity to aversive stimuli is relatively spared. Our findings point to a rarely described property of bradykinesia in PD, namely its selective regulation by everyday outcomes.  相似文献   

3.

Background

Biogenic amines are implicated in reinforcing associative learning. Octopamine (OA) is considered the invertebrate counterpart of noradrenaline and several studies in insects converge on the idea that OA mediates the reward in appetitive conditioning. However, it is possible to assume that OA could have a different role in an aversive conditioning.

Methodology/Principal Findings

Here we pharmacologically studied the participation of OA in two learning processes in the crab Chasmagnathus granulatus, one appetitive and one aversive. It is shown that the aversive memory is impaired by an OA injection applied immediately or 30 minutes after the last training trial. By contrast, the appetitive memory is blocked by OA antagonists epinastine and mianserine, but enhanced by OA when injected together with the supply of a minimum amount of reinforcement. Finally, double-learning experiments in which crabs are given the aversive and the appetitive learning either successively or simultaneously allow us to study the interaction between both types of learning and analyze the presumed action of OA. We found that the appetitive training offered immediately, but not one hour, after an aversive training has an amnesic effect on the aversive memory, mimicking the effect and the kinetic of an OA injection.

Conclusions/Significance

Our results demonstrate that the role of OA is divergent in two memory processes of opposite signs: on the one hand it would mediate the reinforcement in appetitive learning, and on the other hand it has a deleterious effect over aversive memory consolidation.  相似文献   

4.

Background

Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning), whilst if the same target is learnt in isolation (absolute conditioning), discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding.

Methodology/Principal Findings

We show that the presence of a highly concentrated quinine solution (60 mM) acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise.

Conclusion

The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.  相似文献   

5.
Tsuruda JM  Amdam GV  Page RE 《PloS one》2008,3(10):e3397

Background

Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The ‘pollen-hoarding syndrome’ of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.

Methodology/Principal Findings

Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6–7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.

Conclusions/Significance

Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.  相似文献   

6.
In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.  相似文献   

7.

Background

Individual variations in child weight can be explained by genetic and behavioural susceptibility to obesity. Behavioural susceptibility can be expressed in appetite-related traits, e.g. food responsiveness. Research into such behavioural factors is important, as it can provide starting points for (preventive) interventions.

Objectives

To examine associations of children’s appetitive traits with weight and with fruit, snack and sugar-sweetened beverage intake, and to examine whether parenting style interacts with appetite in determining child weight/intake.

Methods

Data were used from 1275 children participating in the INPACT study in 2009–2010, with a mean age of 9 years in 2009. Their height and weight were measured to calculate body mass index (BMI). Parents completed a questionnaire to measure children’s appetitive traits, children’s dietary intake and parenting style. Child BMI z-scores, fruit, snack and sugar-sweetened beverage intake were regressed on appetitive traits. Moderation by parenting style was tested by adding interaction terms to the regression analyses.

Results

Food-approaching appetitive traits were positively, and food-avoidant appetitive traits were negatively related to child BMI z-scores and to child fruit intake. There were no or less consistent associations for snack and sugar-sweetened beverage intake. Authoritative parenting voided the negative association between food fussiness and fruit intake, while neglecting parenting strengthened the positive association between food-approaching appetitive traits and weight.

Conclusions

Early assessment of appetitive traits could be used to identify children at risk for overweight. As parenting style can moderate the associations between appetitive traits and weight/intake in a favourable way, parents are a promising target group for preventive interventions aimed at influencing the effect of appetitive traits on children.  相似文献   

8.

Background and Aims

Many recent studies show that plant–pollinator interaction webs exhibit consistent structural features such as long-tailed distributions of the degree of generalization, nestedness of interactions and asymmetric interaction dependencies. Recognition of these shared features has led to a variety of mechanistic attempts at explanation. Here it is hypothesized that beside size thresholds and species abundances, the frequency distribution of sizes (nectar depths and proboscis lengths) will play a key role in determining observed interaction patterns.

Methods

To test the influence of size distributions, a new network parameter is introduced: the degree of size matching between nectar depth and proboscis length. The observed degree of size matching in a Spanish plant–pollinator web was compared with the expected degree based on joint probability distributions, integrating size thresholds and abundance, and taking the sampling method into account.

Key Results

Nectar depths and proboscis lengths both exhibited right-skewed frequency distributions across species and individuals. Species-based size matching was equally close for plants, independent of nectar depth, but differed significantly for pollinators of dissimilar proboscis length. The observed patterns were predicted well by a model considering size distributions across species. Observed size matching was closer when relative abundances of species were included, especially for flowers with openly accessible nectar and pollinators with long proboscises, but was predicted somewhat less successfully by the model that included abundances.

Conclusions

The results suggest that in addition to size thresholds and species abundances, size distributions are important for understanding interaction patterns in plant–pollinator webs. It is likely that the understanding will be improved further by characterizing for entire communities how nectar production of flowers and energetic requirements of pollinators covary with size, and how sampling methods influence the observed interaction patterns.Key words: Plant–pollinator community, flower morphology, generalization, nectar, pollination network, body size, size matching, specialization  相似文献   

9.

Background and Aims

Although several methods of sampling and storing floral nectar are available, little information exists on sampling and storing nectar from flowers with low nectar volumes. Methods for sampling and storing nectar from the flowers of species with low floral nectar volumes (<1 µL) were investigated using the flowers of Eucalyptus species.

Methods

Sampling with microcapillary tubes, blotting up with filter paper, washing and rinsing were compared to determine masses of sugars recovered and differences in sugar ratios. Storage methods included room temperature, refrigeration and freezing treatments; the addition of antimicrobial agents benzyl alcohol or methanol to some of these treatments was also evaluated. Nectar samples were analysed using high-performance liquid chromatography and the masses of sucrose, glucose and fructose in each sample were determined.

Key Results

Masses of sugars varied significantly among sampling treatments, but the highest yielding methods, rinsing and washing, were not significantly different. A washing time of 1 min was as effective as one of 20 min. Storage trials showed that the sugar concentration measurements of nectar solutions changed rapidly, with the best results achieved for refrigeration with no additive (sucrose and fructose were stable for at least 2 weeks). Sugar ratios, however, remained relatively stable in most treatments and did not change significantly across 4 weeks for the methanol plus refrigerator and freezing treatments, and 2 weeks for the refrigeration treatment with no additive.

Conclusions

Washing is recommended for nectar collection from flowers with low nectar volumes in the field (with the understanding that one wash underestimates the amounts of sugars present in a flower), as is immediate analysis of sugar mass. In view of the great variation in results depending on nectar collection and storage methods, caution should be exercised in their choice, and their accuracy should be evaluated. The use of pulsed amperometric detection, more specific than refractive index detection, may improve the accuracy of nectar sugar analysis.Key words: Eucalyptus, flower with small nectar volume, nectar collection, nectar sampling, nectar storage, sugar ratio  相似文献   

10.

Introduction

Obesity is a growing epidemic that causes many serious health related complications. While the causes of obesity are complex, there is conclusive evidence that overconsumption coupled with a sedentary lifestyle is the primary cause of this medical condition. Dietary consumption is controlled by appetite which is in turn regulated by multiple neuronal systems, including the taste system. However, the relationship between taste and obesity has not been well defined. Growing evidence suggests that taste perception in the brain is altered in obese animals and humans, however no studies have determined if there are altered taste responses in the peripheral taste receptor cells, which is the initiation site for the detection and perception of taste stimuli.

Methodology/Principal Findings

In this study, we used C57Bl/6 mice which readily become obese when placed on a high fat diet. After ten weeks on the high fat diet, we used calcium imaging to measure how taste-evoked calcium signals were affected in the obese mice. We found that significantly fewer taste receptor cells were responsive to some appetitive taste stimuli while the numbers of taste cells that were sensitive to aversive taste stimuli did not change. Properties of the taste-evoked calcium signals were also significantly altered in the obese mice. Behavioral analyses found that mice on the high fat diet had reduced ability to detect some taste stimuli compared to their littermate controls.

Conclusions/Significance

Our findings demonstrate that diet-induced obesity significantly influences peripheral taste receptor cell signals which likely leads to changes in the central taste system and may cause altered taste perception.  相似文献   

11.
Using the proboscis extension response we conditioned pollen and nectar foragers of the honey bee (Apis mellifera L.) to tactile patterns under laboratory conditions. Pollen foragers demonstrated better acquisition, extinction, and reversal learning than nectar foragers. We tested whether the known differences in response thresholds to sucrose between pollen and nectar foragers could explain the observed differences in learning and found that nectar foragers with low response thresholds performed better during acquisition and extinction than ones with higher thresholds. Conditioning pollen and nectar foragers with similar response thresholds did not yield differences in their learning performance. These results suggest that differences in the learning performance of pollen and nectar foragers are a consequence of differences in their perception of sucrose. Furthermore, we analysed the effect which the perception of sucrose reward has on associative learning. Nectar foragers with uniform low response thresholds were conditioned using varying concentrations of sucrose. We found significant positive correlations between the concentrations of the sucrose rewards and the performance during acquisition and extinction. The results are summarised in a model which describes the relationships between learning performance, response threshold to sucrose, concentration of sucrose and the number of rewards. Accepted: 14 April 1999  相似文献   

12.

Background

Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared.

Methodology and Principal Findings

Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species.

Conclusions/Significance

The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.  相似文献   

13.
Bees derived from artificially selected high- and low-pollen-hoarding strains were tested for their proboscis extension reflex response to water and varying sucrose concentrations. High-strain bees had a lower response threshold to sucrose than low-strain bees among pre-foragers, foragers, queens and drones. Pre-foraging low-strain workers showed ontogenetic changes in their response threshold to sucrose which was inversely related to age. High-strain foragers were more likely to return with loads of water compared to low-strain foragers. Whereas low-strain foragers were more likely to return with loads of nectar. Low-strain nectar foragers collected nectar with significantly higher sucrose concentrations than did the high-strain nectar foragers. Alternatively, low-strain foragers were more likely to return empty compared to high-strain foragers. These studies demonstrate how a genotypically varied sensory-physiological process, the perception of sucrose, are associated with a division of labor for foraging. Accepted: 27 October 1998  相似文献   

14.

Introduction

Extinction involves an inhibitory form of new learning that is highly dependent on the context for expression. This is supported by phenomena such as renewal and spontaneous recovery, which may help explain the persistence of appetitive behavior, and related problems such as addictions. Research on these phenomena in the sexual domain is lacking, where it may help to explain the persistence of learned sexual responses.

Method

Men (n = 40) and women (n = 62) participated in a differential conditioning paradigm, with genital vibrotactile stimulation as US and neutral pictures as conditional stimuli (CSs). Dependent variables were genital and subjective sexual arousal, affect, US expectancy, and approach and avoid tendencies towards the CSs. Extinction and renewal of conditioned sexual responses were studied by context manipulation (AAA vs. ABA condition).

Results

No renewal effect of genital conditioned responding could be detected, but an obvious recovery of US expectancy following a context change after extinction (ABA) was demonstrated. Additionally, women demonstrated recovery of subjective affect and subjective sexual arousal. Participants in the ABA demonstrated more approach biases towards stimuli.

Conclusions

The findings support the context dependency of extinction and renewal of conditioned sexual responses in humans. This knowledge may have implications for the treatment of disturbances in sexual appetitive responses such as hypo- and hypersexuality.  相似文献   

15.

Background

The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7], . The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown.

Methodology/Principal Findings

We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption.

Conclusions/Significance

The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers.  相似文献   

16.
Division of labor is a hallmark of eusocial insects and their ecological success can be attributed to it. Honey bee division of labor proceeds along a stereotypical ontogenetic path based on age, modulated by various internal and external stimuli. Brood pheromone is a major social pheromone of the honey bee that has been shown to affect honey bee division of labor. It elicits several physiological and behavioral responses; notably, regulating the timing of the switch from performing in-hive tasks to the initiation of foraging. Additionally, brood pheromone affects future foraging choice. In honey bees, sucrose response threshold is a physiological correlate of age of first foraging and foraging choice. Brood pheromone has been shown to modulate sucrose response threshold in young bees, but its effects on sucrose response thresholds of bees in advanced behavioral states (foragers) are not known. In this study we examined the sucrose response thresholds of two different task groups, foragers (pollen and non-pollen) and non-foraging bees, in response to honey bee brood pheromone. Sucrose response thresholds were not significantly different between brood pheromone treatment and controls among both non-pollen and pollen foragers. However, the sucrose response threshold of non-foraging bees was significantly higher in the brood pheromone treatment group than in the control group. The switch to foraging task is considered a terminal one, with honey bee lifespan being determined at least partially by risks and stress accompanying foraging. Our results indicate that foragers are physiologically resistant to brood pheromone priming of sucrose response thresholds.  相似文献   

17.
Individual behavioural differences in responding to the same stimuli is an integral part of division of labour in eusocial insect colonies. Amongst honey bee nectar foragers, individuals strongly differ in their sucrose responsiveness, which correlates with strong differences in behavioural decisions. In this study, we explored whether the mechanisms underlying the regulation of foraging are linked to inter‐individual differences in the waggle dance activity of honey bee foragers. We first quantified the variation in dance activity amongst groups of foragers visiting an artificial feeder filled consecutively with different sucrose concentrations. We then determined, for these foragers, the sucrose responsiveness and the brain expression levels of three genes associated with food search and foraging; the foraging gene Amfor, octopamine receptor gene AmoctαR1 and insulin receptor AmInR‐2. As expected, foragers showed large inter‐individual differences in their dance activity, irrespective of the reward offered at the feeder. The sucrose responsiveness correlated positively with the intensity of the dance activity at the higher reward condition, with the more responsive foragers having a higher intensity of dancing. Out of the three genes tested, Amfor expression significantly correlated with dance activity, with more active dancers having lower expression levels. Our results show that dance and foraging behaviour in honey bees have similar mechanistic underpinnings and supports the hypothesis that the social communication behaviour of honey bees might have evolved by co‐opting behavioural modules involved in food search and foraging in solitary insects.  相似文献   

18.

Background

A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system clearly reduces conditioned fear. Injections of haloperidol, a preferential D2 receptor antagonist, into the inferior colliculus (IC) enhance the processing of unconditioned aversive information. However, a clear characterization of the interplay of D2 receptors in the mediation of unconditioned and conditioned fear is still lacking.

Methods

The present study investigated the effects of intra-IC injections of the D2 receptor-selective antagonist sulpiride on behavior in the elevated plus maze (EPM), auditory-evoked potentials (AEPs) to loud sounds recorded from the IC, fear-potentiated startle (FPS), and conditioned freezing.

Results

Intra-IC injections of sulpiride caused clear proaversive effects in the EPM and enhanced AEPs induced by loud auditory stimuli. Intra-IC sulpiride administration did not affect FPS or conditioned freezing.

Conclusions

Dopamine D2-like receptors of the inferior colliculus play a role in the modulation of unconditioned aversive information but not in the fear-potentiated startle response.  相似文献   

19.

Background

Neuroimaging has demonstrated that voluntary emotion regulation is effective in reducing amygdala activation to aversive stimuli during regulation. However, to date little is known about the sustainability of these neural effects once active emotion regulation has been terminated.

Methodology/Principal Findings

We addressed this issue by means of functional magnetic resonance imaging (fMRI) in healthy female subjects. We performed an active emotion regulation task using aversive visual scenes (task 1) and a subsequent passive viewing task using the same stimuli (task 2). Here we demonstrate not only a significantly reduced amygdala activation during active regulation but also a sustained regulation effect on the amygdala in the subsequent passive viewing task. This effect was related to an immediate increase of amygdala signal in task 1 once active emotion regulation has been terminated: The larger this peak postregulation signal in the amygdala in task 1, the smaller the sustained regulation effect in task 2.

Conclusions/Significance

In summary, we found clear evidence that effects of voluntary emotion regulation extend beyond the period of active regulation. These findings are of importance for the understanding of emotion regulation in general, for disorders of emotion regulation and for psychotherapeutic interventions.  相似文献   

20.

Background

The communicative meaning of human areolae for newborn infants was examined here in directly exposing 3-day old neonates to the secretion from the areolar glands of Montgomery donated by non related, non familiar lactating women.

Methodology/Principal Findings

The effect of the areolar stimulus on the infants'' behavior and autonomic nervous system was compared to that of seven reference stimuli originating either from human or non human mammalian sources, or from an arbitrarily-chosen artificial odorant. The odor of the native areolar secretion intensified more than all other stimuli the infants'' inspiratory activity and appetitive oral responses. These responses appeared to develop independently from direct experience with the breast or milk.

Conclusion/Significance

Areolar secretions from lactating women are especially salient to human newborns. Volatile compounds carried in these substrates are thus in a position to play a key role in establishing behavioral and physiological processes pertaining to milk transfer and production, and, hence, to survival and to the early engagement of attachment and bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号