首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Falcipain-2 (FP2) is an essential enzyme in the lifecycle of malaria parasites such as Plasmodium falciparum, and its inhibition is viewed as an attractive mechanism of action for new anti-malarial agents. Selective inhibition of FP2 with respect to a family of human cysteine proteases (that include cathepsins B, K, L and S) is likely to be required for the development of agents targeting FP2. Here we describe a series of P2-modified aminonitrile based inhibitors of FP2 that provide a clear strategy toward addressing selectivity for the P. falciparum and show that it can provide potent FP2 inhibitors with strong selectivity against all four of these human cathepsin isoforms.  相似文献   

2.
Falcipains (FPs), cysteine proteases in the malarial parasite, are emerging as the promising antimalarial drug targets. In order to identify novel FP inhibitors, we generated a pharmacophore derived from the reported co-crystal structures of inhibitors of Plasmodium falciparum Falcipain-3 to screen the ZINC library. Further, the filters were applied for dock score, drug-like characters, and clustering of similar structures. Sixteen molecules were purchased and subject to in vitro enzyme (FP-2 and FP-3) inhibition assays. Two compounds showed in vitro inhibition of FP-2 and FP-3 at low µM concentration. The selectivity of the inhibitors can be explained based on the predicted interactions of the molecule in the active site. Further, the inhibitors were evaluated in a functional assay and were found to induce morphological changes in line with their mode of action arresting Plasmodium development. Compound 15 was most potent inhibitor identified in this study.  相似文献   

3.
Myosin-6 is an actin-based motor protein that moves its cargo towards the minus-end of actin filaments. Mutations in the gene encoding the myosin-6 heavy chain and changes in the cellular abundance of the protein have been linked to hypertrophic cardiomyopathy, neurodegenerative diseases, and cancer. Here, we present a detailed kinetic characterization of the human myosin-6 motor domain, describe the effect of 2,4,6-triiodophenol on the interaction of myosin-6 with F-actin and nucleotides, and show how addition of the drug reduces the number of myosin-6-dependent vesicle fusion events at the plasma membrane during constitutive secretion.  相似文献   

4.
Summary Trypan blue and suramin inhibit receptor-mediated endocytosis of vitellogenin in Locusta migratoria. Both drugs bind to cationic side chains of the vitellogenin molecule, which are presumably also the binding sites for the specific vitellogenin receptor. Thus binding of vitellogenin to the receptor is prevented in isolated oocytes and in oocyte membrane preparations. Small amounts of trypan blue may unspecifically enter oocytes by piggy-back endocytosis. Suramin has a high affinity for vitellogenin and in contrast to trypan blue it does not form insoluble complexes with the protein. Therefore, it may be a useful tool for further analysis of the locust vitellogenin receptor.  相似文献   

5.
The structure-based design, chemical synthesis and in vitro activity evaluation of various falcipain inhibitors derived from 2-pyridone are reported. These compounds contain a peptidomimetic binding determinant and a Michael acceptor terminal moiety capable of deactivating the cysteine protease active site.  相似文献   

6.
Suramin, a drug widely used both as a therapeutic agent and in research, inhibits translation in eukaryotic cell-free systems from rabbit reticulocyte lysate (IC(50)=142-241 microM). Suramin affects both initiation (block of 43S pre-initiation complex formation) and elongation (impairment of poly(U) translation). The drug induces an increase in the pools of ribosomal subunits and the formation of high molecular weight ribosomal complexes, thus causing the disappearance of polysomes. Ribosomes isolated from suramin-treated translating mixtures are inactivated. [(3)H]Suramin binds to ribosomes and to isolated 60S and 40S ribosomal subunits (116, 106 and 3 binding sites, respectively) showing higher affinity for the small subunit (K(d)=2 microM).  相似文献   

7.
Treatment of late-stage human African trypanosomiasis is complicated by the presence of trypanosomes within the central nervous system (CNS). The regimen commonly prescribed to treat CNS-stage disease involves the use of the trypanocidal drugs suramin and melarsoprol. Suramin does not cross the blood–brain barrier efficiently and therefore, at normal dosages, will not cure CNS-stage infections. An initial treatment with suramin is given to eliminate the parasites from the peripheral tissues. This is followed by a course of intravenous melarsoprol, which can enter the CNS. However, melarsoprol not only produces severe adverse reactions but also is extremely painful to administer. One possible method to help alleviate these problems is to reduce the total amount of melarsoprol in the treatment regimen. This study indicates a synergism between suramin and melarsoprol and demonstrates that experimental murine CNS-trypanosomiasis can be cured with a single intraperitoneal dose of 20 mg/kg suramin followed almost immediately by 0.05 ml (4.5 μmol) topical melarsoprol. These dosages will not cure the infection when administered as monotherapies. Moreover, the timing of the drug administration appears to be crucial to the successful outcome of the regimen. If the interval between injection of suramin and application of topical melarsoprol is extended from 15 min to 3 or 7 days, the infections are not cured. Although extended relapse times occur following these regimens when compared with monotherapy approaches. Thus, there is strong evidence that injected suramin and topical melarsoprol should be given almost simultaneously to achieve the most effective combination of the two drugs.  相似文献   

8.
Inhibitors of the enzyme NQO2 (NRH: quinone oxidoreductase 2) are of potential use in cancer chemotherapy and malaria. We have previously reported that non-symmetrical furan amidines are potent inhibitors of NQO2 and here novel analogues are evaluated. The furan ring has been changed to other heterocycles (imidazole, N-methylimidazole, oxazole, thiophene) and the amidine group has been replaced with imidate, reversed amidine, N-arylamide and amidoxime to probe NQO2 activity, improve solubility and decrease basicity of the lead furan amidine. All compounds were fully characterised spectroscopically and the structure of the unexpected product N-hydroxy-4-(5-methyl-4-phenylfuran-2-yl)benzamidine was established by X-ray crystallography. The analogues were evaluated for inhibition of NQO2, which showed lower activity than the lead furan amidine. The observed structure-activity relationship for the furan-amidine series with NQO2 was rationalized by preliminary molecular docking and binding mode analysis. In addition, the oxazole-amidine analogue inhibited the growth of Plasmodium falciparum with an IC50 value of 0.3?μM.  相似文献   

9.
The effect of suramin on pinocytosis and intralysosomal proteolysis by resident rat peritoneal macrophages cultured in vitro has been studied. Suramin had little effect on the rate of pinocytic uptake of two non-adsorptive substrates [14C]sucrose and [3H]dextran, but unexpectedly enhanced uptake of a third, 125I-labelled polyvinylpyrrolidone (PVP). Since this enhanced uptake was completely abolished by NaF at a concentration known to inhibit pinocytosis, it clearly represented an increased internalization of substrate and not merely a superficial binding to the cell surface. It was concluded that suramin (i) does not affect the rate of formation of pinocytic vesicles but (ii) acts as a bivalent ligand, binding to both the macrophage surface and the 125I-labelled polyvinylpyrrolidone, thus converting a non-adsorptive into an adsorptive substrate. Suramin (500 micrograms/ml) decreased both the rate of uptake of formaldehyde-denatured 125I-labelled bovine serum albumin (BSA) (an adsorptive substrate) and the rate of its subsequent intracellular degradation. Thus, depending on the substrate chosen to measure pinocytosis, the same modifier may stimulate or inhibit uptake or be without effect.  相似文献   

10.
d-Amino acids can play important roles as specific biosynthetic building blocks required by organisms or act as regulatory molecules. Consequently, amino acid racemases that catalyze the formation of d-amino acids are potential therapeutic targets. Serine racemase catalyzes the reversible formation of d-serine (a modulator of neurotransmission) from l-serine, while proline racemase (an essential enzymatic and mitogenic protein in trypanosomes) catalyzes the reversible conversion of l-proline to d-proline. We show the substrate-product analogue α-(hydroxymethyl)serine is a modest, linear mixed-type inhibitor of serine racemase from Schizosaccharomyces pombe (Ki = 167 ± 21 mM, Ki = 661 ± 81 mM, cf. Km = 19 ± 2 mM). The bicyclic substrate-product analogue of proline, 7-azabicyclo[2.2.1]heptan-7-ium-1-carboxylate is a weak inhibitor of proline racemase from Clostridium sticklandii, giving only 29% inhibition at 142.5 mM. However, the more flexible bicyclic substrate-product analogue tetrahydro-1H-pyrrolizine-7a(5H)-carboxylate is a noncompetitive inhibitor of proline racemase from C. sticklandii (Ki = 111 ± 15 mM, cf. Km = 5.7 ± 0.5 mM). These results suggest that substrate-product analogue inhibitors of racemases may only be effective when the active site is capacious and/or plastic, or when the inhibitor is sufficiently flexible.  相似文献   

11.
The trypanocidal drug suramin is a potent inhibitor of β-hexosaminidase A with a Ki of about 4.5 μM, and to a lesser extent of β-hexosaminidase B (Ki 31.5 μM). β-Hexosaminidase B remained active in the presence of 1.0 mM suramin whereas the activity of β-hexosaminidase A was completely inhibited at 0.1 mM.  相似文献   

12.
Ubiquitin-activating enzyme (UAE or E1) activates ubiquitin via an adenylate intermediate and catalyzes its transfer to a ubiquitin-conjugating enzyme (E2). MLN4924 is an adenosine sulfamate analogue that was identified as a selective, mechanism-based inhibitor of NEDD8-activating enzyme (NAE), another E1 enzyme, by forming a NEDD8-MLN4924 adduct that tightly binds at the active site of NAE, a novel mechanism termed substrate-assisted inhibition (Brownell, J. E., Sintchak, M. D., Gavin, J. M., Liao, H., Bruzzese, F. J., Bump, N. J., Soucy, T. A., Milhollen, M. A., Yang, X., Burkhardt, A. L., Ma, J., Loke, H. K., Lingaraj, T., Wu, D., Hamman, K. B., Spelman, J. J., Cullis, C. A., Langston, S. P., Vyskocil, S., Sells, T. B., Mallender, W. D., Visiers, I., Li, P., Claiborne, C. F., Rolfe, M., Bolen, J. B., and Dick, L. R. (2010) Mol. Cell 37, 102-111). In the present study, substrate-assisted inhibition of human UAE (Ube1) by another adenosine sulfamate analogue, 5'-O-sulfamoyl-N(6)-[(1S)-2,3-dihydro-1H-inden-1-yl]-adenosine (Compound I), a nonselective E1 inhibitor, was characterized. Compound I inhibited UAE-dependent ATP-PP(i) exchange activity, caused loss of UAE thioester, and inhibited E1-E2 transthiolation in a dose-dependent manner. Mechanistic studies on Compound I and its purified ubiquitin adduct demonstrate that the proposed substrate-assisted inhibition via covalent adduct formation is entirely consistent with the three-step ubiquitin activation process and that the adduct is formed via nucleophilic attack of UAE thioester by the sulfamate group of Compound I after completion of step 2. Kinetic and affinity analysis of Compound I, MLN4924, and their purified ubiquitin adducts suggest that both the rate of adduct formation and the affinity between the adduct and E1 contribute to the overall potency. Because all E1s are thought to use a similar mechanism to activate their cognate ubiquitin-like proteins, the substrate-assisted inhibition by adenosine sulfamate analogues represents a promising strategy to develop potent and selective E1 inhibitors that can modulate diverse biological pathways.  相似文献   

13.
Appert C  Zoń J  Amrhein N 《Phytochemistry》2003,62(3):415-422
The conformationally restricted phenylalanine analogue 2-aminoindan-2-phosphonic acid (AIP) inhibits phenylalanine ammonia-lyase (PAL) competitively in a time-dependent manner. This phenomenon was investigated in more detail with the heterologously expressed, highly purified homotetrameric PAL-1 isozyme from parsley. The kinetic analysis revealed that the enzyme-inhibitor complex is formed in a single "slow" step with an association rate of k(2)=2.6+/-0.04 10(4) M(-1) s(-1). The inhibition is reversible with a dissociation rate of k(-2)=1.8+/-0.04 10(-4) s(-1) and an equilibrium constant of K(i)=7+/-2 nM. The previously described PAL inhibitor (S)-2-aminooxy-3-phenylpropanoic acid [(S)-AOPP] was also found to be a slow-binding inhibitor of PAL-1. The carboxyl analogue of AIP, 2-aminoindan-2-carboxylic acid, served as a substrate of PAL-1 and was converted to indene-2-carboxylic acid.  相似文献   

14.
A number of structurally diverse gold compounds were evaluated as possible inhibitors of Falcipain 2 (Fp2), a cysteine protease from P. falciparum that is a validated target for the development of novel antimalarial drugs. Remarkably, most tested compounds caused pronounced but reversible inhibition of Fp2 with Ki values falling in the micromolar range. Enzyme inhibition is basically ascribed to gold binding to catalytic active site cysteine. The same gold compounds were then tested for their ability to inhibit P. falciparum growth in vitro; important parasite growth inhibition was indeed observed. However, careful analysis of the two sets of data failed to establish any direct correlation between enzyme inhibition and reduction of P. falciparum growth suggesting that Fp2 inhibition represents just one of the various mechanisms through which gold compounds effectively antagonize P. falciparum replication.  相似文献   

15.
The tumor suppressor p53 has evolved a MDM2-dependent feedback loop that promotes p53 protein degradation through the ubiquitin–proteasome system. MDM2 is an E3-RING containing ubiquitin ligase that catalyzes p53 ubiquitination by a dual-site mechanism requiring ligand occupation of its N-terminal hydrophobic pocket, which then stabilizes MDM2 binding to the ubiquitination signal in the DNA-binding domain of p53. A unique pseudo-substrate motif or “lid” in MDM2 is adjacent to its N-terminal hydrophobic pocket, and we have evaluated the effects of the flexible lid on the dual-site ubiquitination reaction mechanism catalyzed by MDM2. Deletion of this pseudo-substrate motif promotes MDM2 protein thermoinstability, indicating that the site can function as a positive regulatory element. Phospho-mimetic mutation in the pseudo-substrate motif at codon 17 (MDM2S17D) stabilizes the binding of MDM2 towards two distinct peptide docking sites within the p53 tetramer and enhances p53 ubiquitination. Molecular modeling orientates the phospho-mimetic pseudo-substrate motif in equilibrium over a charged surface patch on the MDM2 at Arg97/Lys98, and mutation of these residues to the MDM4 equivalent reverses the activating effect of the phospho-mimetic mutation on MDM2 function. These data highlight the ability of the pseudo-substrate motif to regulate the allosteric interaction between the N-terminal hydrophobic pocket of MDM2 and its central acidic domain, which stimulates the E3 ubiquitin ligase function of MDM2. This model of MDM2 regulation implicates an as yet undefined lid-kinase as a component of pro-oncogenic pathways that stimulate the E3 ubiquitin ligase function of MDM2 in cells.  相似文献   

16.
Falcipain-2 (fp2) is a hemoglobinase required for supplying peptides and amino acids for the proliferation of Plasmodium falciparum in blood. The prospect of circumventing its activity thereby serves as a potential strategy for mining drugs for anti-malarial therapy. However, to date, efforts to express soluble and active fp2 in Escherichia coli have been futile. To overcome this problem, fp2 was expressed under an array of conditions including the exploitation of multiple gene constructs in eukaryotic and prokaryotic hosts. A series of experiments led to the finding that the placement of maltose-binding protein (MBP) before the fp2 mature domain was best in availing the soluble expression of the protease. The results also indicate that the prodomain impaired the bacterial expression of the protease and the amino acid residues at the N-terminal segment of mature fp2 can have a significant effect on the folding and solubility of the enzyme. The overexpressed MBP-fp2 fusion protein was purified and shown to be functionally active, providing a very useful alternative to the use of resolubilized enzyme for future study of structure and function of fp2.  相似文献   

17.
18.
Manoalide, a natural product from sponge, displays anti-inflammatory activity in vivo. Previous work has shown that manoalide is also a potent covalent inhibitor of the extracellular phospholipase A2 from cobra venom and that the inhibition correlated with a pH-dependent change in manoalide (Lombardo and Dennis (1985) J. Biol. Chem. 260, 7234-7240). Manoalide contains two rings and the opening of either would produce an alpha,beta-unsaturated aldehyde. The cobra venom phospholipase A2 may be able to catalyze the opening or isomerization of one of these rings, raising the possibility that manoalide is acting as a suicide substrate. To ascertain the role of the gamma-lactone ring in the inhibition, we have now investigated a synthetic manoalide analogue, 3(cis,cis-7,10)-hexadecadienyl-4-hydroxy-2-butenolide (HDHB) which contains only the alpha,beta-unsaturated gamma-lactone ring. We have found that the closed and open forms are in rapid equilibrium between pH 4 and 9 with the cyclic form being preferred at acidic pH values and the open cis form preferred at pH 9.5. When the pH is raised above 12, the alpha,beta double bond isomerizes to form trans-HDHB. Once the trans compound is formed, it is stable at all pH values and does not recyclize to the gamma-lactone ring. The observed pKa of 7.7 found for the inhibition of manoalide agrees well with the transition of the closed to the cis form of the gamma-lactone ring. Kinetic experiments with the HDHB compound show that under conditions in which the cis and closed form of the inhibitor are present in equal molar ratios, HDHB is not an irreversible inhibitor, but reversibly competes with substrate. However, the kinetics of this inhibition are complex and do not follow either pure competitive or non-competitive inhibition. The trans-HDHB exhibits similar complex kinetic but is several times more potent. The distinct differences between the behavior of manoalide and HDHB clearly indicate that while the gamma-lactone ring may play an important role in manoalide inhibition, it alone does not produce irreversible inhibition.  相似文献   

19.
Falcipain-2, the major cysteine hemoglobinase from the human malaria parasite Plasmodium falciparum, is critical for parasite development and is considered a promising chemotherapeutic target. In order to facilitate the high-throughput screening of Falcipain-2 inhibitors from natural sources, we developed an economic and highly-productive overexpression system in Escherichia coli using a codon-optimized proFalcipain-2 construct. Very high expression levels (35-55% of total host proteins) were observed when proFalcaipain-2 expression was induced with 1mM isopropyl-1-thio-β-D-galactopyranoside (IPTG) in several E. coli strains, with the highest level observed for BL21(DE3). A lower expression (~40% of total host proteins) was observed when BL21(DE3) was grown in ZYM-5052 auto-induction medium, containing 0.2% lactose as inducer. However, the culture grew to notably higher cellular density, increasing ~1.5 times the overall yield of the system when compared with conventional IPTG-induction. Although several conditions were modified to achieve the expression of soluble and active Falcipain-2, the enzyme was mainly obtained in the form of insoluble aggregates. After purification and refolding, ~50 mg of active enzyme were obtained per liter of culture at low cost using a regular incubator shaker, and recombinant Falcipain-2 exhibited structural and functional characteristics very similar to the natural counterpart. Due to its versatility and simplicity, this strategy can be straightforwardly adapted to other proteins from Plasmodium species or any other organism with an AT-rich genome.  相似文献   

20.
Hormone-sensitive lipase (HSL) plays an important role in the mobilization of free fatty acids (FFA) from adipocytes. The inhibition of HSL may offer a pharmacological approach to reduce FFA levels in plasma and diminish peripheral insulin resistance in type 2 diabetes. In this work, the inhibition of HSL by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones has been studied in vitro. 5-methoxy-3-(3-phenoxyphenyl)-1,3,4-oxadiazol-2(3H)-one (compound 7600) and 5-methoxy-3-(3-methyl-4-phenylacetamidophenyl)-1,3,4-oxadiazol-2(3H)-one (compound 9368) were selected as the most potent HSL inhibitors. HSL is inhibited after few minutes of incubation with compound 7600, at a molar excess of 20. This inhibition is reversed in the presence of an emulsion of lipid substrate. The reactivation phenomenon is hardly observed when incubating HSL with compound 9368. The molecular mechanism underlying the reversible inhibition of HSL by compound 7600 was investigated using high performance liquid chromatography and tandem mass spectrometry. The stoichiometry of the inhibition reaction revealed that specifically one molecule of inhibitor was bound per enzyme molecule. The inhibition by compound 7600 involves a nucleophilic attack by the hydroxy group of the catalytic Ser of the enzyme on the carbon atom of the carbonyl moiety of the oxadiazolone ring of the inhibitor, leading to the formation of covalent enzyme-inhibitor intermediate. This covalent intermediate is subsequently hydrolyzed, releasing an oxadiazolone decomposition product, carbon dioxide and the active HSL form. On the basis of this study, a kinetic model is proposed to describe the inhibition of HSL by compound 7600 in the aqueous phase as well as its partial reactivation at the lipid-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号